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Introduction 

 
This report documents the content and results of the seminars under Initiative No. EHP-BFNU-OVNKM-4-
149-2024 funded under the Fund for Bilateral Relations within the framework of EEA and Norway Grants 
2014-2021.  

The initiative included two two-day seminars held in May 2024 in Brno, Czech Republic, at Brno University 
of Technology and in June 2024 in Porsgrunn, Norway, at the University of South-Eastern Norway. The 
seminars aimed to share knowledge and experience in the field of reliability and sustainability of buildings, 
understand the specific aspects of this issue in each country, establish cooperation between researchers, 
and create a basis for future joint research, publications, and student exchange.  

The seminars comprised lectures by experts from both universities. The list of lecturers and lecture titles is 
given below. The lecture content can be found in Annexes A-F. Following the lectures, an expert panel was 
held to discuss theoretical, practical, economic and environmental aspects of reliability and sustainability 
design and analyses of transport infrastructure and offshore wind turbines. 

The second day of seminars was dedicated to technical tours. Visitors visited the experimental laboratories 
of both universities and the construction sites of the newly built Eifage-Nye Veier E18 motorway. 

Summary of the seminars: 
 

Lectures  

Hadi Amlashi Some aspects on the use of reliability techniques in offshore wind 
turbine design 

Annex A 

Drahomír Novák  Stochastic assessment of concrete structures: advanced FEM 
modelling and case studies  

Annex B 

Lars Erik Øi  Cost, size, and structure optimization of CO2 absorber columns 
onshore and offshore  

Annex C 

David Lehký Determination of mechanical fracture parameters using machine 
learning-based inverse analysis 

Annex D 

Mequanent M. Alamnie  Mechanistic asphalt pavement damage prediction and modelling for 
Sustainable roads  

Annex E 

Lukáš Novák Uncertainty quantification in structural mechanics: point estimates 
and surrogate models 

Annex F 

 

Panel discussion  

Theoretical, practical, economic and environmental aspects of reliability and sustainability design and 
analyses of transport infrastructure and offshore wind turbines. 

Technical tours  

Brno Laboratory of Institute of Physics of Materials, Czech Academy of Science – Fatigue testing 
of materials. 

Brno Laboratory of Institute of Building Testing – Fracture tests of quasi-brittle materials. 
Porsgrunn Laboratories of Dept. of Process, Energy and Environmental Technology, USN – Civil, 

Mechanical, and Process Engineering laboratories. 
Porsgrunn Site excursions of Eifage-Nye Veier E18 motorway – cable-stayed bridge and tunnel. 
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Lectures 

 
The content of the individual lectures are briefly presented in this section. The lecture slides can be found 
in Annexes A-F. 
 

Hadi Amlashi 

Some aspects of the use of reliability techniques in offshore wind turbine design 

The development of offshore wind turbines is considerably more complex than onshore projects due to 
the challenges posed by remote locations and harsher environmental conditions, particularly in offshore 
areas with stronger winds. This requires careful consideration of environmental factors and their impacts. 
In designing support structures for offshore wind turbines, the conventional approach relies on direct 
calculations of load effects and resistance, supplemented by safety factors and margins. However, it is 
crucial for the safety format to transparently account for the inherent uncertainties and variability in loads 
and resistance. Structural reliability methods can be employed to calibrate the safety factors to achieve 
this goal. This approach is essential to establish a robust support structure for offshore wind turbines. In 
this first lecture, Hadi Amlashi presented some aspects of using reliability techniques in offshore wind 
turbine design. The implication of risk and reliability-based design approach and structural design criteria 
are introduced. When addressing varying load combinations, it is recommended to employ slightly 
smaller safety factors for wave-induced loads and more prominent safety factors for wind-induced loads 
within typical moment ratios. The lecture addresses identifying uncertainty measures in load effects and 
strength specific to offshore wind turbines. It also showcases the proposed methodology for mooring line 
systems for floating offshore wind turbines. 
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Drahomír Novák 

Stochastic assessment of concrete structures: advanced FEM modelling and case studies 

In the second lecture, Drahomír Novák presented an integrated methodology for reliability and durability 
analysis of structures consisting of several subtopics such as nonlinear finite element method (NLFEM) 
analysis, uncertainties propagation of Monte Carlo (MC) type, reliability analysis, sensitivity analysis, 
parameters identification, model updating, surrogate modelling, material degradation aspects and safety 
formats. Consideration of uncertainties in structural engineering is a growing topic because it provides 
valuable information on the reliability of structures in time while addressing life-cycle aspects. Utilisation 
of nonlinear NLFEM and MC type simulation is essential for modelling of the concrete structures like 
bridges and performing its reliability assessments. The aim of the stochastic analysis is to propagate 
uncertainties through a computational NLFEM model to gain statistical information from the output as 
well as information about the sensitivity of the mathematical model to uncertainties in input variables. 
However, in structural engineering, the mathematical model can be quite complex and uncertainty 
propagation solved by classical MC approach is very difficult to perform as MC type simulation involves 
large number of numerical evaluations of structural response. Therefore, advanced statistical and 
reliability techniques must be applied. Author and his co-workers were active in this field combining 
nonlinear analysis and reliability approaches for concrete structures, during development an urgent need 
for efficient combination of several approaches and methods appeared. The lecture focused on several 
keystones of such integrated approach for a routine complex assessment utilizing developed software 
tools and practical application of the approach for selected case studies. 
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Lars Erik Øi 

Cost, size, and structure optimization of CO2 absorber columns onshore and offshore 

The conventional design of CO2 absorber columns predominantly involves the use of circular steel 
columns fitted with structured packing. Historically, concrete has been favored for the construction of 
large-scale structures due to its cost efficiency and robust nature. In recent times, there has been a shift 
towards the adoption of rectangular concrete shapes as the standard for new land-based CO2 capture 
projects. Conversely, compact circular steel columns are being recommended for offshore applications, 
aligning with the specific requirements of such settings. A significant challenge in achieving cost 
optimization lies in the higher relative costs of process equipment size and weight for offshore 
applications when compared to land-based projects.  
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David Lehký 

Determination of mechanical fracture parameters using machine learning-based inverse analysis 

Due to the increasing worldwide emphasis on the environmental and economic sustainability of material 
production, much current research is focused on the development of innovative building materials. When 
studying material behavior, its mechanical fracture properties are determined by conducting laboratory 
tests. In many cases, attention is focused on analyzing the properties associated with resistance to crack 
formation and propagation, rather than on the maximum strength of the material. Mechanical fracture 
parameters help us to understand the relation between the macroscopic response of the specimen and 
its microstructural evolution during cracking. This is crucial in the design and modeling of newly 
developed composites. In his lecture, David Lehký introduces artificial neural network (ANN)-based 
inverse analysis method to identify mechanical fracture parameters from fracture tests. In case of 
composite materials with the wide range of experimental responses, an ensemble of ANN is 
recommended to be employed. Lecture also touches the problem of identification of statistical 
characteristics of parameters. The capabilities of the proposed identification system and software were 
demonstrated using example of material parameter identification of reinforced concrete wall subjected 
to shear failure. 
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Mequanent M. Alamnie 

Mechanistic asphalt pavement damage prediction and modelling for Sustainable roads 

Asphalt concrete is one of the most important road-building materials that exhibit extraordinary chemical, 
physical and mechanical properties. It is exposed to variable vehicular and environmental loading. The 
crucial mechanical properties of asphalt concrete are viscoelastic, viscoplastic, viscodamage 
(deformability), cracking and fracture properties. Thus, asphalt mixture characterizations are focused on 
stiffness and stiffness change, fatigue and damage law evolution, permanent deformation (viscoplasticity), 
and cracks and crack propagation at low temperatures. The mechanistic-empirical (ME) pavement design 
approach attempts to model these four properties for accurate pavement life prediction.   In this lecture, the 
linear viscoelastic and damage responses (fatigue and rutting) of asphalt concrete were presented. A new 
damage test procedure (Sequential test procedure) was applied to analyze the damage interaction between 
the permanent deformation and fatigue. The linear viscoelastic (LVE) properties of asphalt concrete are 
crucial for mechanistic pavement design. A damage model (fatigue, rutting, or both) takes LVE stiffness as 
a key parameter. The reliability of pavement structural life prediction relies on the accurate modelling of the 
associated damage modes as a system, on the robustness of the test methods, and advancement of 
theories. Based on observations and design experiments, the permanent deformation-fatigue damage 
interaction sequence dominates the asphalt concrete damage mechanism. Moreover, the Mechanistic 
pavement design approach is a state-of-the-art design philosophy. This method is founded on the reliability 
of test methods and holistic (coupling) techniques. The continuum damage mechanics (CDM) theory is the 
foundation for quantifying the damage. The variables considered in pavement design are many and 
complicated. Thus, the integration of the reliability approach with the fundamental continuum method can 
be the way forward to predict pavement life more accurately. Furthermore, a unified damage model can be 
formulated using the reliability concepts with fundamental constitutive models of asphalt concrete. 
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Lukáš Novák 
Uncertainty quantification in structural mechanics: point estimates and surrogate models 

In his lecture, Lukáš Novák addresses topic of uncertainty quantification using surrogate models. 
Surrogate modeling of costly mathematical models representing physical systems is challenging since it 
is necessary to fulfill physical constraints in the whole design domain together with specific boundary 
condition of investigated systems. Moreover, it is typically not possible to create a large experimental 
design covering whole input space due to computational burden of original models. Therefore, there has 
been recently a considerable interest in developing surrogate models capable of satisfying physical 
constraints –spawning an entirely new field of physics-informed machine learning. In this lecture, a 
recently introduced methodology for the construction of physics-informed polynomial chaos expansion 
(PC2) that combines the conventional experimental design with additional constraints from the physics 
of the model was presented. Physical constraints in PC2 can be represented by a set of differential 
equations and specified boundary condition allowing surrogate model to be constructed more accurately 
with fewer physics-based model evaluations. Although the main purpose of the PC2 lies in combining 
data and physical constraints, it is also possible to construct surrogate model only from differential 
equations and boundary conditions alone without requiring evaluations of the original model. It is well 
known that a significant advantage of surrogate models in form of polynomial chaos expansions are their 
possibilities in uncertainty quantification including statistical and sensitivity analysis. Efficient uncertainty 
quantification by PC2 can be performed through analytical post-processing of a reduced basis filtering 
out the influence of all deterministic space-time variables. Once the surrogate model with physical 
constraints is constructed, it is possible to perform realistic reliability analysis to ensure that analyzed 
physical system will satisfy the given safety requirements. 
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Panel discussion 

 
Theoretical, practical, economic and environmental aspects of reliability and sustainability design and 
analyses of transport infrastructure and offshore wind turbines were discussed. The presenting experts, 
together with university staff and students, discussed the topics presented in the lectures and tried to place 
them in the broader context of sustainability of construction, material resources and climate protection. The 
topic of CO2 separation and storage in underwater reservoirs proved to be very attractive. Participants were 
interested in experimental research in this field, practical applications and challenges for future research. 
The specifics of the assessment of existing structures in both countries, the specifics of the standards used 
and the extent to which advanced computing techniques and methods are involved in this activity were also 
discussed. The need for sharing theoretical and practical knowledge to increase the efficiency of 
maintenance of transport infrastructure and offshore structures was demonstrated. Surrogate modelling 
using both data-driven and physics-based models was also a widely debated topic, which has very strong 
potential in reliability engineering. Also, the application of machine learning-based models and their ability 
to generalize and adapt to new data is proving to be a very promising research direction in engineering. The 
panel discussion ended with an invitation to technical tours, which presented some parts of the 
experimental research necessary to validate the developed methods and software tools or to obtain data of 
computational models. 
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Technical tours 

 
On the second day of the seminars there were technical tours, the course of which is described in this 
section. 
 

Czech Academy of Science, Brno, Czech Republic 

Laboratory of Institute of Physics of Materials – Fatigue testing of materials 

During the visit to the Institute of Physics of Materials, Czech Academy of Science, the participants were 
shown three laboratories – low cycle fatigue and high cycle fatigue laboratories and creep laboratory.  

The main interest of the low cycle fatigue group is the study of fatigue damage mechanisms, interaction 
of low cycle fatigue with creep at elevated temperatures, structural changes and damage evolution in 
high temperature symmetric and asymmetric loading, cracking and fatigue fracture of laminate 
composites, effect of the coatings on the cyclic plasticity and fatigue life of advanced materials, and short 
crack growth kinetics in advanced steels. Some basic theoretical backgrounds were presented to the 
participants together with the example of low fatigue tests performed on selected machines including 
MTS 809 axial–torsional test system, MTS 880 servo-hydraulic testing machine for thermo-mechanical 
fatigue, etc. 

The research activities in the high cycle fatigue group are focused on the study of the nature and 
quantitative description of the fatigue processes in all fatigue stages. The main goal of the research is to 
contribute to better understanding of cyclic plasticity at low amplitudes, crack initiation and threshold 
values of fatigue crack propagation and to the fracture-mechanical description of the fatigue crack 
behavior. Theoretical and experimental studies are focused on the relation between microstructure, 
microstructure evolution during damage progress, and macroscopic fatigue and fatigue/creep properties. 
The numerical estimation of the fracture parameters and simulations of the fracture behavior are an 
important part of the research as well. The formulation of crack stability criteria for non-homogenous 
materials, notches and layered structures is a live issue studied in the group. Owing to this, the spectrum 
of studied materials is rapidly increasing. At present non-metallic materials such as polymers, polymer or 
ceramic based composites and advanced building materials are being analyzed. 

The last visited laboratory focuses on creep tests and study of processes occurring upon creep 
deformation of materials. The research infrastructure of the Institute provides a unique capacity of almost 
40 creep devices suitable for identification of creep characteristics, such as the time until rupture, creep 
rate or overall creep elongation. Both tension and compression experiments are possible, under 
controlled load and stress, within the temperature range from 20°C to 1,000°C (commonly). The two most 
recently installed devices enable carrying out experiments at the temperature up to 1,400°C, either in 
vacuum or in protective (modified) atmosphere. There are also devices for the small punch test available. 
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Brno University of Technology, Brno, Czech Republic 

Laboratory of Institute of Building Testing – Fracture tests of quasi-brittle materials 

Theoretical and practical aspects of testing fracture parameters of quasi-brittle materials were presented 
to the participants in the laboratory of the Institute of Building Testing. This institute is focused on the 
research and development of diagnostic and test methods in the field of civil engineering, assessment 
and evaluation of existing structures, laboratory and field testing of structural units, elements, 
components, details, and models, including specific properties of building materials. One of the groups 
focuses on testing of mechanical fracture parameters of specimens with edge notch loaded in a suitable 
test configuration such as three-point bending test or wedge splitting test. Theoretical details of 
evaluation of test records and identification of material parameters using inverse analysis were presented 
in one of the seminar lectures. In lab, testing machine and related measuring equipment was introduced 
followed by video demonstration of loading a notched specimen in three-point bending configuration. 
Participants were able to see development of strains at the vicinity of the notch and a development of 
magistral crack and surrounding fracture process zone. Aspects of accurate measuring of displacements 
and recording of post-peak behavior were discussed. 
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University of South-Eastern Norway, Porsgrunn, Norway 

Laboratories of Dept. of Process, Energy and Environmental Technology 

Participants visited three different laboratories at USN, Porsgrunn. At first, participants visited the USN's 
process laboratories, where research projects focused on capturing and analysing carbon dioxide (CO2) 
and its environmental impacts were conducted in collaboration with industrial partners. The primary 
areas of interest include studying mechanisms of amine degradation, assessing various types of amines 
for their CO2 absorption capabilities, and developing advanced techniques for accurately analysing CO2 
absorption processes. The equipped laboratory has multiple instruments and apparatus to support the 
research efforts. These include a gas chromatograph with mass spectrometer (GC-MS) for precise 
molecular analysis, a rheometer for highly accurate viscosity measurements, a density meter for density 
determinations, an equilibrium cell for in-depth studies of reaction equilibriums, a Raman spectrometer 
for molecular and structural analysis, various reactors and autoclaves for experimental setups, as well as 
multiple gas chromatographs equipped with flame ionisation (FID) and thermal conductivity (TCD) 
detectors for comprehensive gas analysis. The visit is then followed by a tour of the chemical processing 
hall that serves as a central space for a wide range of experimental setups dedicated to research in fields 
such as CO2 capture, catalysis, and multiphase flow. In the multiphase flow section, researchers have 
access to state-of-the-art equipment, including ECT/ERT and Gamma meters, enabling precise and 
detailed analysis of fluid behaviour. The research areas span various topics, including biological 
purification processes and powder technology. A fully equipped Venturi rig with a Coriolis meter, Gamma 
meter, and ultrasonic level sensors allows for comprehensive and accurate measurement of various 
parameters. The facility has a compressed air compressor, providing researchers with the necessary 
utilities to support their research. 

During the visit, the participant had the opportunity to explore the civil engineering lab, which is equipped 
with tools such as a press and bending rig used for testing the strength of wood and concrete. The lab also 
contains specialised equipment like bucket drills, wing drills, cone apparatuses for geotechnical 
investigations, levelling binoculars, plane lasers, total stations, and GNSS equipment for surveying and 
GIS. 

At last, participants visited the mechanical lab of the mechanical department at USN. The lab is equipped 
to conduct material testing, including tensile testing, deflection, impact toughness, hardness 
measurement, and microscopy. Additionally, the lab is furnished with equipment for fluid mechanics 
tasks, such as a pipe resistance calculation rig, a pump curve calculation rig, and a 3D printer capable of 
producing photopolymer models using UV light. A cooling system with an output of up to 20 kW has been 
installed in connection with thermodynamics. The central workshop has a lathe, milling machine, sheet 
metal shears, plate crackers, column drills, Tig, Mig, gas and stick welding, plasma cutting equipment, 
and other mechanical tools. This workshop fabricates experimental equipment for bachelor's, master's, 
and PhD levels.  
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Eifage-Nye Veier E18 motorway, Norway 

Site excursions – cable-stayed bridge and tunnel 

In the second part, participants visited the new Eifage-Nye Veier E18 motorway. A project manager in 
Nye-Veier first welcomed them at the site. The "Nye Veier e18 Rugtvedt – Langangen" project is a 17-
kilometre expansion of the E18 motorway strategically positioned within the Greenland region. 
Anticipated to open in 2026, the project will boast a four-lane configuration designed to accommodate a 
maximum speed limit of 110 km/h. The project involves building six bridges, with the Grenland Bridge as 
the main focus, and adding two more bridges in the Language area. The planned infrastructure includes 
six tunnels, covering a total distance of 9 kilometres and an additional 4.2 kilometres of purpose-built 
daytime roadway. The zoning plan for this motorway has been formally approved, and Eiffage is the 
contractor constructing it for Nye-veier, the project owner. Two new twin bridges are being built over 
Langangsfjord, each 400 meters long and with 50-meter-high pillars. The bridges are being designed 
using the highest BIM standards available. 
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Conclusions 

 
The seminars aimed to share knowledge and experience in the field of reliability and sustainability of 
buildings, to understand the specific aspects of this issue in each country, to establish cooperation between 
researchers and to create a basis for future joint research, publications and student exchange. All parts of 
the seminar were very beneficial for both sides. The topics of the lectures raised great interest among the 
audience, which was confirmed by the subsequent panel discussion, where not only the details of the 
subtopics were discussed, but their setting in a broader engineering-social context. The follow-up technical 
tours then appropriately complemented the theoretical aspects with a practical component. The 
participants thus had the opportunity to see the issues in their entirety. 

In addition to research and engineering topics, experts from both countries also discussed the possibilities 
of cooperation in education, student exchange, support for employee mobility, etc. It can be concluded that 
the joint activity fulfilled its purpose and started cooperation, which both partner institutions are interested 
in further developing. 
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Hadi Amlashi 

Some aspects on the use of reliability techniques in offshore wind turbine design 
  



Some aspects on the use 
of reliability techniques 
in offshore wind turbine 
design

by Hadi Amlashi

Associate professor in structural mechanics, USN
Brno, 23.05.2024

Contents

o Introduction
o Structural Reliability Analysis

• Safety of structural systems
• Structural design criteria
• Risk and reliability-based design

o Offshore wind turbines
• Challenges
• Design criteria

o Some examples
o Discussion and results
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Relationships between structural failure and safety  

3

Structural failure scenario Mitigation Safety measures

Inadequate safety margin to cover normal 
inherent uncertainties 

Appropriate design criteria, such as 
Sufficient safety factors or increased 
characteristic loads 

Structural reliability analysis

Gross error or lack of proper checks or 
inefficiency during design, fabrication, 
installation or operation

QA/QC in engineering and project 
management processes Risk analysis

Unknown phenomena Firsthand Experience and knowledge gain Lesson learned (case by case 
basis)

➢ What is it?
• How to account for the uncertainties in the predicted behaviour under 

extreme and cyclic load conditions and inspection. 
➢ Generally classified in to two:

• Structural Reliability Analysis (SRA)
• Determine the failure probability considering fundamental variability, 

and natural and man-made uncertainties due to lack of knowledge.
• Quantitative Risk Analysis (QRA)
• Estimation of likelihood of fatalities, environmental damage, or loss

4

Risk and reliability methods
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Structural design criteria

➢Structural design criteria refer to serviceability and safety:
• Serviceability: Service experiences and operational issues, i.e.,  

accidental actions and abnormal (SLS and ALS)
• Safety: normal design conditions considering loads and 

strength,. i.e., ultimate and fatigue limit states (ULS, FLS)

➢How to ensure adequate structural safety?
• Proper design, load and response monitoring and condition 

monitoring during its design lifetime. 

5

Structural reliability analysis

6

➢ Design equation: Rd > Ld
or in partial safety factors format: 𝛾𝐿𝐿𝑐 =

𝑅𝑐
𝛾𝑅

➢ 𝑃𝑓 = 𝑃 𝑔 𝑿 ≤ 0 = 𝑔׬ 𝑿 ≤0 𝑓𝑿 𝒙 𝑑𝒙

Reliability Index 𝛽 = Φ−1 𝑃𝑓

➢ Methods for calculating the probability of failure:
o First-order Reliability Method (FORM)
o Second-order Reliability Method (SORM)
o Monte Carlo Simulations
o Etc.

A3



Offshore wind turbines

➢ Nearly 80% of offshore wind turbines are of the type monopile 
supported offshore wind turbines.

➢ Reducing the uncertainty in the design of the support structure 
can significantly contribute to reducing the LCOE, as it can 
reduce the safety factors.

➢ What is the implied safety level for support structures defined 
in design codes, such as IEC 61400-1 (IEC, 2019) and DNV-
ST-0126 (DNV, 2021)?

7

This Photo by Unknown Author is licensed under CC BY-NC-ND

Major sources of uncertainty in offshore wind turbine
➢ Wind turbine: Structural, mechanical and electrical systems, 

production, installation, operation and maintenance, etc.

➢ Wind: Turbulence intensity, Wind shear, Coherence, Wind load 
model, etc.

➢ Wave and current: Long-term environmental description (load 
model, wave kinematics, spectrum, spreading) , wave-wind-
current directionalities, etc.

➢ Pile-soil interaction: Soil model (damping and stiffness), 
scouring, etc. 

➢ Simplified (mathematical) models

➢ Both model and parameter uncertainty are important

8
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Wind model uncertainty

➢ Medium-fidelity models like the Kaimal spectrum or Mann 
model Vs. high-fidelity methods based on computational fluid 
mechanics, such as large eddy simulations (LES), and 
measurements.

➢ Differences in wind shear profiles and coherent structures has 
a significant impact on the predicted tower fore-aft bending 
moments, as well as tower torsion and blade root moments

➢ The effect of turbulence intensity should also be notified.

9

10

Wave model uncertainty

➢ Linear or second-order or higher-order wave kinematics at different 
sea states

➢ Differences in responses due to use of Pierson-Moskowitz or 
JONSWAP wave spectrum

➢ The directionality of environmental loads in operational conditions 
is important, since aerodynamic damping is significant for in-line 
wind and negligible in the cross-wind direction. 

➢ Differences in computer codes for OWTs gives different model 
uncertainties due to different structural models, implementation of 
aerodynamic loads and discretization of the hydrodynamic loads, 
etc.
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Maximum fore-aft bending moment wave-to-wind ratio

➢ Expected value of Maximum fore-aft bending moment for wind load only 
(Mv), wave load only (Myy,w) and relative ration of Myy,w/Myy,v (Env. 
Condition Set 1., short-term statistics, Barreto et al. 2020) - Fully-coupled 
aero-hydro-servo-elastic nonlinear time-domain response analysis

➢ The relative bending moment of Myy,w/Myy,v varies between 0.2-0.6

depending on environmental condition

➢ Representative ULS design load combination cases for the monopile tower 
global bending (IEC 61400-3-1):

Load combinations 𝜑𝑤 = 1

11

Wind pre-
dominated

Uncertainty due to long-term extreme response extrapolation 
Effect of short-term simulation time

12

❑Modified Environmental Contour 
Method

❑10min simulation length introduces 
high uncertainty in the long-term 
extrapolation (50 years) around rated 
and cut-out wind speeds. 

Rated wind
speed

Cut-out
wind
speed

𝐹𝑋1ℎ,50𝑦𝑟 𝜉 = 𝐹𝑋1ℎ,𝑠ℎ𝑜𝑟𝑡−𝑡𝑒𝑟𝑚|𝑢𝑤,𝐻𝑠,𝑇𝑝 𝜉|𝑢𝑁0 ,𝐻𝑁0 ,𝑇𝑁0
ൗ50
𝑁0
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Resistance of support structure
➢ Resistance formulation for ultimate limit state :

𝑀𝑢 =
𝐹𝑦
6

1 − 0.84 𝐹𝑦
𝐸
𝐷
𝑡

𝐷3 − 𝐷 − 2𝑡 3

➢ Required characteristic capacity:

𝑴𝒖,𝒕𝒓𝒖𝒆 =
𝑀𝑢,𝑡𝑟𝑢𝑒

𝑀𝑢,𝑔𝑖𝑣𝑒𝑛 𝑝𝑎𝑟
.
𝑀𝑢,𝑔𝑖𝑣𝑒𝑛 𝑝𝑎𝑟

𝑀𝑢,𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑎𝑟
.
𝑀𝑢,𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑎𝑟

𝑀𝑢,𝑐ℎ𝑎𝑟𝑐
.𝑀𝑢,𝑐ℎ𝑎𝑟𝑐

➢ True bending strength for the tower:
𝑀𝑢,𝑡𝑟𝑢𝑒 = Ƹ𝜒𝑚,𝑔𝑖𝑣𝑒𝑛 𝑝𝑎𝑟. Ƹ𝜒𝑚,𝑎𝑐𝑡𝑢𝑙 𝑝𝑎𝑟. Ƹ𝜒𝑚,𝑐ℎ𝑎𝑟𝑐. 𝛾𝑟. 𝛾𝑤𝑀𝑤𝑐 + 𝛾𝑣𝑀𝑣𝑐
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Reliability formulation for monopile-supported offshore wind 
turbine

14

𝑔 𝑿 = 𝑀𝐹𝐴,𝑢,𝑟𝑒𝑞. − 𝜑𝑤𝑀𝐹𝐴,𝑤𝑡 + 𝑀𝐹𝐴,𝑣𝑡

= Ƹ𝜒𝑚,𝑔𝑖𝑣𝑒𝑛.𝑝𝑎𝑟 Ƹ𝜒𝑚,𝑎𝑐𝑡𝑢𝑎𝑙.𝑝𝑎𝑟 Ƹ𝜒𝑚,𝑐ℎ𝑎𝑟𝑐𝑀𝐹𝐴,𝑢𝑐

− ൫
൯

𝜑𝑤 Ƹ𝜒𝑤,𝑛𝑙𝐵𝑓𝑙𝑒𝑥𝐵𝑠𝑖𝑚 Ƹ𝜒𝑤,𝑠𝑡𝑎𝑡. Ƹ𝜒𝑤,𝑙𝑖𝑛. Ƹ𝜒𝑤,𝑒𝑛𝑣.𝑀𝐹𝐴,𝑤𝑐

+ Ƹ𝜒𝑣,𝑛𝑙. Ƹ𝜒𝑣,𝑠𝑡𝑎𝑡. Ƹ𝜒𝑣,𝑎𝑒𝑟𝑜. Ƹ𝜒𝑣,𝑒𝑛𝑣. Ƹ𝜒𝑣,𝑔𝑒𝑜.𝑀𝐹𝐴,𝑣𝑐

Design equation: 𝑀𝑦𝑦,𝑢𝑐 = 𝛾𝑟 𝑐. 𝛾𝑤 + 𝛾𝑣 𝑀𝑦𝑦,𝑣𝑐

where: c = Myy,wc / Myy,vc

Reference case: c = 0.5 & (𝛾𝑟, 𝛾𝑤, 𝛾𝑣) = (1.35,1.35,1.35)
Sensitivities:

o Bias due to the Simulation time 
o Flexibility in the foundation
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Reliability formulation for monopile-supported offshore wind 
turbine

16

Implied Safety level in Offshore Wind Turbines
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Annual failure probabilities - Sensitivity to the model 
uncertainty in wave nonlinearity prediction
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Annual failure probabilities - Sensitivity to the model 
uncertainty in wave statistics prediction
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Annual failure probabilities - Sensitivity to the correlation 
between the nonlinearity in wind and wave environmental load 
prediction
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Annual failure probabilities - Sensitivity to the model 
uncertainty in wind nonlinearity prediction
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Annual failure probabilities - Sensitivity to the model 
uncertainty in wind statistics prediction
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Annual failure probabilities - Sensitivity to wind safety factor, 
Bias due to the Simulation time
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moment ratio, i.e., wind-dominated design. 
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Annual failure probabilities - Sensitivity to wave safety factor, 
Bias due to the Simulation time 
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Annual failure probabilities - Sensitivity to resistance safety 
factor, moment ratio of 0.5, Bias due to the Simulation time 
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Annual failure probabilities as a function of wave 
to wind moment ratio

25

When wave bending moment predominates, the bias 
on response extrapolation near cut-out wind speed 
(Bsim=1.1) will increase the failure probability, while 
the bias on response extrapolation near rated wind 
speed (Bsim=0.75) conservatively reduces the 
implied failure probability

5.00E-05

5.00E-04

5.00E-03

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6Pr
ob

ab
ili

ty
 o

f f
ai

lu
re

 (P
f)

c=MFA,wc/MFA,vc

Bflex= 1.05 Bsim=1.1
Bsim=0.75 Base Case

5x10-4

5x10-3

Wind predominated Wave predominated

Implied safety levels in the mooring systems under different 
ULS design load conditions

26

➢ Structural safety in DNV standard for FWTs is ensured by use of a consequence class methodology:
o Consequence Class 1 (CC1); in which failure is assumed unlikely to lead to an unacceptable event 

such as loss of life, collision with an adjacent structure, or environmental damages
o Consequence Class 2 (CC2); in which failure may well lead to an unacceptable event such as those 

stated above. 
𝑅𝑐 = 𝛾𝑟 𝛾𝑚𝑒𝑎𝑛𝑇𝑚𝑐 + 𝛾𝑑𝑦𝑛𝑇𝑑𝑦𝑛𝑐

Limit state Load factor CC1 CC2

ULS 𝛾𝑚𝑒𝑎𝑛 1.3 1.5

ULS 𝛾𝑑𝑦𝑛 1.75 2.2

ALS 𝛾𝑚𝑒𝑎𝑛 1.00 1.00

ALS 𝛾𝑑𝑦𝑛 1.10 1.25
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Reliability formulation for mooring systems for ULS

27

➢ Ultimate limit state function for the mooring lines can be expressed by the tension:

𝑔 ෡𝚾, ෡𝚭 = 𝑅 ෡𝚾 − 𝑇𝑚 ෡𝚾 + 𝑇𝑑𝑦𝑛 ෡𝚾, ෡𝚭

𝑃𝑓 = 𝑃 𝑔 𝑿 ≤ 0 = 𝑃 𝑹𝑚 − 𝑻𝑚 + 𝑻𝑑𝑦𝑛 ≤ 0

𝑅𝑐 = 𝛾𝑟 𝑘𝛾𝑚𝑒𝑎𝑛 + 𝛾𝑑𝑦𝑛 𝑇𝑑𝑦𝑛𝑐

𝑘 = Τ𝑇𝑚𝑐 𝑇𝑑𝑦𝑛𝑐
The limit-state equation can then be written as:

𝑔 𝑿 = 𝑅𝑐,𝑡𝑟𝑢𝑒 − 𝑇𝑚,𝑡𝑟𝑢𝑒 + 𝑇𝑑𝑦𝑛,𝑡𝑟𝑢𝑒
𝑅𝑐,𝑡𝑟𝑢𝑒 = Ƹ𝜒𝑅𝑚. Ƹ𝜒𝑅𝑠𝑦𝑠. Ƹ𝜒𝑅𝑐,𝑐𝑜𝑚𝑝. 𝑅𝑐,𝑐𝑜𝑚𝑝

𝑇𝑚,𝑡𝑟𝑢𝑒 = Ƹ𝜒𝑚𝑒𝑎𝑛𝑇𝑚𝑐
𝑇𝑑𝑦𝑛,𝑡𝑟𝑢𝑒 = Ƹ𝜒𝑠𝑡𝑎𝑡,𝐿𝐹 Ƹ𝜒𝑑𝑦𝑛,𝐿𝐹 Ƹ𝜒𝑑𝑦𝑛,𝑤𝐹𝑇𝑑𝑦𝑛𝑐

sub-indices mean, stat., LF and WF refer to uncertainties due to mean tension characteristic, Low frequency statistical, Low 
Frequency load modelling, Wave Frequency load modelling, respectively.

Reliability formulation for mooring systems for ULS

28

Random variable Uncertainty due to Distribution Mean SD

Ƹ𝜒𝑅𝑚 Tension capacity model 
prediction Normal 1.0 0.05

Ƹ𝜒𝑅𝑠𝑦𝑠 System effect Extreme Value Distribution μ𝐸𝑉𝐷 σ𝐸𝑉𝐷
Ƹ𝜒𝑅𝑐,𝑐𝑜𝑚𝑝 Characteristics resistance Lognormal 1.0 0.05

Ƹ𝜒𝑚𝑒𝑎𝑛 Mean tension load model Normal 1.0 0.15

Ƹ𝜒𝑠𝑡𝑎𝑡,𝐿𝐹 Statistical prediction in LF Normal 1.0 0.4

Ƹ𝜒𝑑𝑦𝑛,𝐿𝐹 Dynamic load prediction in 
LF Normal 1.0 0.05

Ƹ𝜒𝑑𝑦𝑛,𝑤𝐹 Dynamic load prediction in 
WF Gumbel 0.9 0.05

k Normalized (relative) 
tension load ( Τ𝑇𝑚 𝑇𝑑𝑦𝑛𝑐) ---

Varies btw 0.1-2.0
(Typical values used: 

0.2, 1.0 & 2.0)
---

𝛾𝑟 Resistance safety factor --- 1.0 ---

𝛾𝑚𝑒𝑎𝑛 Mean tension load factor --- CC1: 1.3
CC2: 1.5 ---

𝛾𝑑𝑦𝑛 Dynamic tension load factor --- CC1: 1.75
CC2: 2.2 ---
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Annual probability of failure as a function of mean tension 
safety factor (𝜸𝒎𝒆𝒂𝒏) with 𝜸𝒅𝒚𝒏 = 𝟏. 𝟕𝟓 for CC1 and 𝜸𝒅𝒚𝒏 =
𝟐. 𝟐 for CC2

29
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Base Case, ULS with CC1, Relative mean to dynamic tension of 1.0
ULS with CC2, Relative mean to dynamic tension of 0.2
ULS with CC2, Relative mean to dynamic tension of 1.0
ULS with CC1, Relative mean to dynamic tension of 2
 ULS Offshore units, NORMOOR JIP, single safety factor

Sensitivity to relative mean to
dynamic tension loads of k = 0.2 and
k = 1.0. The case for ULS with
Consequence Class 1 and k = 2 and
ULS offshore NORMOOR single
safety factor are also shown for
comparison.

Annual probability of failure as a function of dynamic tension 
safety factor (𝜸𝒅𝒚𝒏) with 𝜸𝒎𝒆𝒂𝒏 = 𝟏. 𝟑 for CC1 and 𝜸𝒎𝒆𝒂𝒏 =
𝟏. 𝟓 for CC2

30

Sensitivity to relative mean to dynamic
tension loads of k = 0.2 and k = 1.0. The
cases for ULS with Consequence Class 1
and k = 2 and ULS offshore
NORMOOR safety factors are also
shown for comparison.
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Safety level as a function of mean to dynamic tension load (k) 
with sensitivity study on the number of components in a 
segment

31

the number of components in a segment
beyond 100 has very limited effect on
the implied reliability level

Conclusions

32

❑ For monopile-supported offshore wind turbines:

o Safety level generally corresponds to the probability level of the order 5×10-3 to 5×10-4. 

o The implied failure probability depends on the wave to wind moment ratio. 

o Differentiated safety factors for different wind and wave load combinations will provide a unified safety level across a wide range of 

load combination, wind predominate vs. wave predominate

o Slightly smaller safety factors for wave-induced loads and larger for the wind-induced loads for a typical moment ratio range of 0.2-0.5 

to obtain a unified safety level

o The implied safety level in current design codes can further be harmonized especially accounting for bias in calculation of wind and 

wave statistics, effect of simulation time on long-term response and bias in the Inclusion of monopile bottom flexibility 

❑ For mooring line systems:

o The implied safety level for CC1 is not satisfactory across a range of mean-to-dynamic tension ratio (k= 0.1-2.0) when comparing to the 

nominal target level (10-4). 

o The implied safety for design of mooring systems according to CC2 are, however, generally acceptable as compared to the nominal 

target value (10-5). 
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Advancing Reliability-Based Design

Data Collection

More comprehensive 
data on the relative 
magnitude of wave and 
wind loads for larger 
wind turbines is needed 
to improve the statistical 
models and reliability 
estimates.

Soil-Structure 
Interaction

The influence of pile-
soil interaction on the 
reliability level should 
be further investigated, 
as the response of rigid 
and flexible foundations 
can differ significantly.

Design Code 
Refinement

Ongoing efforts to 
refine design codes, 
such as IEC 61400-3-1, 
should continue to 
ensure transparent and 
explicit safety 
requirements based on 
reliability principles.

Collaborative 
Research

Interdisciplinary 
collaboration between 
researchers, engineers, 
and industry 
stakeholders is crucial to 
advance the reliability-
based design of offshore 
wind turbines.

Embracing the Complexity

Comprehensive Modeling

Offshore wind turbine design requires advanced numerical modeling to accurately 

capture the complex interactions between wind, waves, and the supporting 

structure.

Uncertainty Quantification

Careful assessment and transparent representation of uncertainties in loads, load 

loads, load effects, and structural resistance are essential for reliable design.

design.

Reliability-Based Approach

Adopting a reliability-based design approach, with explicit safety requirements, 

requirements, ensures the desired safety level for offshore wind turbine structures.

structures.
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Towards a Sustainable Future

Reliability-Based Design Transparent Safety 
Requirements

Advancing Design 
Codes

Collaborative 
Research

Accounting for 
uncertainties in loads 
and resistance

Explicit safety factors 
based on target 
reliability levels

Continuous 
refinement of design 
standards

Interdisciplinary 
efforts to address 
complex challenges

Ensuring the desired 
safety level for 
offshore wind 
turbines

Optimizing the 
balance between 
safety and cost-
effectiveness

Adapting to evolving 
industry needs and 
technological 
advancements

Driving innovation 
and sustainable 
growth in offshore 
wind energy
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Drahomír NOVÁK (and many co-workers)

Stochastic assessment of concrete 
structures: advanced 

FEM modelling and case studies

Bilateral cooperation between USN and BUT Reliability and sustainability of structures

Brno University of Technology
Faculty of Civil Engineering
Institute of Structural Mechanics

Complexity: Nonlinearity + uncertainty 
+ degradation + metamodeling +….
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Outline

• The aim 
• Deterministic model

– Nonlinear fracture mechanics
– ATENA software
– Material parameters identification

• Stochastic model
– Uncertainties simulation 
– FReET software – statistical, sensitivity, reliability analyses

• Degradation modelling
– Carbonation of concrete, corrosion of reinforcement
– FReET-D software

• Meta-modelling
– ANN surrogate modelling
– Polynomial chaos expansion

• Safety formats
• Examples – case studies
• Conclusions

DETERMINISTIC MODEL: 
Nonlinear FEM – ATENA software

2/232/28
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Nonlinear FEM simulation

2/233/28

Materials Models for Concrete

Nonlinear FEM simulation

2/234/28
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Tunnel segments – damage of reinforced concrete 
segments – test and simulation

Realistic crack patterns prediction

Material parameters identification: fracture-
mechanical parameters 

+

3PB WST

Identification

Database

CT

• Compressive strength
• Tensile strength
• Modulus of elasticity
• Fracture energy
• Etc.

4/23
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Scheme of inverse analysis

Material
model
parameters

Stochastic calculation (LHS) – training set for 
calibration of synaptic weights and biases

Structural response 

12/30

Deterministic and probabilistic approach

Deterministic
– Safety factors format
– The level of 

structural reliability is 
not determined !

– Nonlinearity – safety 
factors problematic !

Probabilistic
– Parameters as random 

variables/fields, 
statistical correlation

– Design with respect to 
target reliability level – 
reliability is determined

– Nonlinearity – leads to 
global safety factorPf = ?
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STOCHASTIC MODEL: 
Uncertainties simulation –

FReET software

• multipurpose probabilistic software for 
statistical, sensitivity and reliability 
analysis of engineering problems;

• allows to simulate uncertainties               
of the problem at random variables level 
(typically in civil/mechanical engineering –
material properties and loading, 
geometrical imperfections);

Feasible Reliable Engineering Tool ‒ 
FReET, version 1.6:

• Uncertainties are involved in every part of the system 
Structure – Load – Environment, probabilistic  
assessment of civil infrastructure systems 

• Random response Z is a function of basic random 
variables (or random fields) X:  

    where function g(X) represents a computational model

  Statistical analysis     
  Reliability analysis  
  Sensitivity analysis

• Computationally intensive problems/nonlinear FEM!
 

Motivation

( )P 0fp Z= £

( ) ( ) dg g fµ = ò XX X X

( )Z g= X
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Uncertainty simulation
Small-sample simulation of Monte Carlo type

5/30

• takes mean value of each 
interval = interval centroid

( )

( )
( )

d
d

d

1where      
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i Simb
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Sim Sim

y f y y
y N y f y y

f y y
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×
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-
= =

ò
ò

ò

Latin Hypercube Sampling

Uncertainty simulation
Small-sample simulation of the Monte Carlo type

LHS-mean
• sample averages equal exactly the mean values of variables;
• variances of the sample sets are much closer to the target values 

compared to other selection schemes;
• for some probability density functions (including e.g. Gaussian, 

Exponential, Laplace, Rayleigh, Logistic, Pareto, etc.) the integral 
can be solved analytically;

• for others, the extra effort of doing the numerical integration is 
definitely worthwhile.
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Uncertainty simulation
Small-sample simulation of the Monte Carlo type

Imposing statistical correlation
• Correlation matrices:

• prescribed (target) – T
• generated (actual) – A

• Difference matrix (error matrix):

! = # − %

• a suitable norm of the matrix E 

defined as an objective function: 

minimum among all possible rank 

combinations.

• There exist &!"#! !!"#"# possibilities 

simulated annealing

• Nonparametric rank-order correlation between input variables and output 

response variable.

 Kendall tau:

Spearmanʼs coefficient 

of correlation:

• Robust ‒ uses only orders.

• Additional result of LHS simulation, 

   no extra effort.

• Bigger correlation coefficient = 

   high sensitivity.

• Relative measure of sensitivity  (-1, 1).

Nonparametric rank-order based sensitivity analysis
A small-sample simulation of the Monte Carlo type

Sensitivity analysis:

( ) Nj,pqττ jjii ,,2,1, ==

( )( )11

6
1 1

2

+-
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å
=

nnn

d
r
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Uncertainty simulation
A small-sample simulation of the Monte Carlo type

Reliability analysis:

• Simplified – rough estimates, as 

constrained by extremally small 

number of simulations (10‒100)!

• Cornell safety index.

• Curve fitting.

• FORM, importance sampling, 

response surface…

FReET software
„Random variables“ window:
• friendly Graphical User Environment;

• 30 probability distribution functions 

(PDF), mostly 2-parametric, some     

3-parametric, two 4-parametric (Beta 

PDF and normal PDF with                    

a Weibullian left tail);

• unified description of random 

variables with the optional use          

of statistical moments or parameters

or a combination of moments and 

parameters;

• PDF calculator.
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„Limit state/response functions“ 
window:
• closed form (direct), using the implemented 

Equation Editor (simple problems);
• numerical (indirect), using a user-defined DLL 

function that can be prepared in practically any 
programming language (C++, Fortran, Delphi, 
etc.);

• general interface to third-party software using 
user-defined *.BAT or *.EXE programs based on 
input and output text communication files;

• multiple response functions assessed in the 
same simulation run.

FReET software
„Statistical correlation“ window:
• visualization in both Cartesian and parallel 

coordinates;
• also a weighting option.

Probabilistic techniques:
• crude Monte Carlo simulation;
• Latin Hypercube Sampling (3 alternatives);
• Hierarchical Latin Hypercube Sampling;
• First Order Reliability Method (FORM);
• Curve fitting;
• Simulated Annealing employed for 

correlation control over inputs;
• Bayesian updating;

FReET software
„Reliability“ window:
• histograms of output variables;
• sensitivity analyses;
• reliability estimates by various simulation 

and approximation methods;
• limit state functions;
• parametric studies;
• cost/risk assessment.
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Extensions in modeling of uncertainties
Random distribution of material properties 
along the structure: Spatial variability 
   material properties  horizontal strains

cracks crack widths

Random fields

probabilistic software FReET

nonlinear fracture mechanics 
software ATENA

+

SARA studio
SARA software

25/33
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Structural reliability
Computational 

modeling 
High 

computational 
burden
Surrogate 

model

META-MODELLING

Lehký – Prestressed concrete roof girders: Part II – Surrogate modeling and sensitivity analysis

30

ANN surrogate model
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Lehký – Prestressed concrete roof girders: Part II – Surrogate modeling and sensitivity analysis

31

! = ℳ(%) = '
!∈ℕ!

(!Ψ! %

• ($ deterministic coefficients to be computed (Least Square 
Regression)

• Ψ$ X basis of multivariate polynomials is orthonormal with respect 
to the joint distribution function (Hermite polynomials)

• M represents size of stochastic model (Curse of Dimensionality)
• Efficient algorithm for Sparse PCE was employed (9 terms) – Least 

Angle Regression

Polynomial chaos expansion (PCE)

• Increasing age of structures leads to material 
degradation significantly influencing durability, 
serviceability and ultimate capacity limit states and 
decreasing service life

• Significant role for planning reconstruction or 
demolition of structures – prognosis in time needed

• Main stressors: Carbonation of concrete and 
corrosion of reinforcement

DEGRADATION MODELLING
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ULS = Ultimate Limit 

State

SLS = Serviceability LS DLS = Durability LS

Limit states and reliability levels

FReET-D module

• module of the software FReET;
• combination of analytical models and 

simulation techniques for assessing       
the potential degradation of newly 
designed as well as existing concrete 
structures;

• models for carbonation, chloride ingress, 
reinforcement corrosion, sulphide, acid 
and frost attack;

• Around 50 models which can be used in 
stochastic way

Feasible Reliable Engineering Tool for Degradation ‒ FReET‒D:
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Design value of resistance Rd

• How to determine design value of resistence 
using NLFEA? Nonlinear behaviour and 
uncertain material parameters!

SAFETY FORMATS

Design value ?

19/23

• Ultimate limit state represented by critical value of force applied 
during experiment (peak of LD diagram)

• Design value by:
• fully probabilistic approach – design value for Probability = 

0.0012 (Eurocode)
• classical calculation using partial safety factors
• ECOV method 
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Safety formats for NLFEA

• Partial Safety Factor method :  +% = + ,&%, ,'%,	

• material characteristics are extremely low
• possibility of unrealistic behaviour
• only one NLFEA is needed

• Global safety format EN 1992-2:  .* =
+ ,"#, -,$#,…

/.12
• NLFEA	with	mean	values 	 	 34$% = 6. 89: ; 4$&
• application	of global	safety	factor	on	result	
• reduced mean value of concrete characteristic because of its higher 

variability
• only one NLFEA is needed

19/2615th International Probabilistic Workshop, Dresden 2017 

ECoV for NLFEA

Another	global	safety	factor	approach	via	estimation	of		coefficient	of	variation:

E' =
E(

FGH I)	J	K*

•  ECoV by Červenka:  
• 2 x NLFEA needed ($! & $")   %# =

$
$,&' 	()

(!
("

• ECoV by Schlune:   

• (N+1)	x	NLFEA	needed 	 	 %# ≈
$
(!

∑)*$
+ (!,(∆$%

∆$%
6#)

.

• reduced	mean	values	B∆)	 	 	 B∆) = B/) C DEF − H(I / K C %#)
 

20/2615th International Probabilistic Workshop, Dresden 2017 
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Semi-probabilistic approach
E' = L) ; FGH −I)J+K)

• Latin Hypercube Sampling for estimation of moments of response function
• approximation by surrogate model (Polynomial Chaos Expansion, ANN etc. )
• A simple numerical quadrature method to estimate moments of function R by 

Rosenblueth

21/2615th International Probabilistic Workshop, Dresden 2017 

Design value of Response

22/2615th International Probabilistic Workshop, Dresden 2017 
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Design value ? Left tail of PDF

EXAMPLES:
SELECTED CASE STUDIES OF 

CONCRETE 
STRUCTURES/BRIDGES
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Application: S33.24 bridge in Austria 
• Jointless bridge
• Casting in the end of March 2009 
• Testing after 28 days 
• Material parameters identification

 Krok 36, Marktwasser model
 Trhliny: v prvcích, otevření: <-5.390E-05;5.655E-03>[m], Sigma_N: <-1.247E+01;3.198E+00>[MPa], Sigma_T: <-3.082E+00;2.318E+00>[MPa]

Application: S33.24 bridge in Austria 

Variable E ft fc Gf εc
E 1.0 0.69 -0.9 0.5 0.9
ft 0.70 1.0 -0.78 0.89 0.61
fc -0.86 -0.76 1.0 -0.61 -0.89
Gf 0.52 0.87 -0.60 1.0 0.49
εc 0.85 0.61 -0.88 0.47 1.0

Symbol Unit Mean
Coeff. Of

Variation PDF Source
Elastic Modulus E Gpa 210 0.03 LN Literature

Yield stress fy Mpa 475 0.07 LN Literature

Variable E fy
E 1.0 0.60
fy 0.59 1.0

Selected parameters of steel: 

Selected parameters of concrete: 
0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Deformation [mm]

Lo
ad

 [k
N

]

A1
A2
A3
B1
B2
B3

Symbol Unit Mean
Coeff. of

Variation PDF Source
Elastic Modulus E Mpa 39500 0.1 N Identification

Poisson’s ratio ν - 0.20 0.05 LN Literature

Tensile strength ft Mpa 2.90 0.09 Weibull Identification
Compressive strength fc Mpa -28.90 0.1 LN Literature
Specific fracture energy Gf N/m 178.00 0.13 Weibull Identification

Uniaxial compressive strain εc - 0.0018 0.15 LN Literature
Reduction of strength cRed - 0.80 0.06 Rect. Literature
Critical comp. displacement wd m -0.0005 0.1 LN Literature
Specific material weight ρ MN/m3 0.023 0.1 LN Literature
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Application: S33.24 bridge in Austria 

29/33

Eurocode:
β = 4.7 for one year period

Pf = 1.5E-6. 

      ULS: g(X) = R(X) - E(X)        SLS: g(X) = Wlim(X) - W(X)

Eurocode: β = 1.8
deflection limit of span: L/250 or L/500 
US Standard Specifications: L/360 or L/500

Application: railway sleeper
• pre-stressed railway sleeper (ŽPSV a.s.)
• model in ATENA 3D
• random dominant concrete 

parameters
• LHS simulations with imposed 

statistical correlation – 30 realizations
• probability of maximal crack width
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Case study: Kristineberg bridge
Bridge Nr. 2-2043-15 

E4 Kristineberg, Stockholm

The reinforced concrete bridge has a two-span frame structure. Total bridge length is 26 m; 
bridge deck has a width of 7 m. The bridge deck has inclination 2.5% in both longitudinal and 
transverse directions. There are two lateral abutments and one intermediate support. The 
abutments have a significant inclination with respect to road axis and they have a different 
shape and size.

Case study
Deterministic model

3D Model

Geometry

FE mesh

Material parameters (concrete, reinforcement) based on laboratory experiments.

11 351 elements CCIsoBrick and CCIsoTetra
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Case study
Stochastic model

22/28

Random parameters 
of concrete and steel

Case study
Stochastic model – chosen results

Experiment (empty green symbol), deterministic simulation (full red symbol) 
and PDF of perpendicular displacement for selected monitoring point – Nr. 88, 

loading case 2.

Example of graphical output
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Case study
Deterministic model

Cracks in concrete deck (max 0.285 mm)

Load case 2

Case study
Stochastic model – chosen results

27/28
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Maximal crack width [mm]

Probability of exceedance of crack width 
(full blue/broken red line – loading case 1/2).
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Toronto experiment  Pexp = 685 kN (Collins, M.P., Bentz, E. 2015)

Toronto shear tests
(June 2015) span 19 m, height 4m

Collins, M.P., et al.: Challenge of Predicting the Shear Strength of Very Thick Slabs. 
Concrete International, V.37,No.11, Nov. 2015,

Toronto experiment  Pexp = 685 kN (Collins, M.P., Bentz, E. 2015)

ATENA simulation   Psim = 745 kN
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Simulation Experiment
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tensile strength 

fracture energy random field

Random sampling by LHS 

Toronto shear tests
Influence of uncertainties ?

tensile strength random field

• Increasing age of structures leads to material 
degradation significantly influencing durability, 
serviceability and ultimate capacity limit states and 
decreasing service life

• Significant role for planning reconstruction or 
demolition of structures – prognosis in time needed

• Main stressors: Carbonation of concrete and corrosion
of reinforcement

Degradation
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ULS = Ultimate Limit 

State

SLS = Serviceability LS DLS = Durability LS

Limit states and reliability levels

The service life can be assessed based on different levels of 
limit state function modeling:
1) durability limit states based on phenomenological 

models for concrete carbonation and corrosion of 
reinforcement – level 1 

2) ultimate limit states at the level of critical structural 
element – level 2

3) ultimate limit states at the level of global behavior of 
structure – level 3

For the global structural modeling advanced computational 
models are needed, where aspects of nonlinear behavior of 
concrete and degradation modeling are combined

Service life
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FReET-D module

• module of the software FReET;
• combination of analytical models and 

simulation techniques for assessing       
the potential degradation of newly 
designed as well as existing concrete 
structures;

• models for carbonation, chloride ingress, 
reinforcement corrosion, sulphide, acid 
and frost attack;

• can serve for design or performance-
based specification.

Feasible Reliable Engineering Tool for Degradation ‒ FReET‒D:

over the Morava
river in Czech 
Republic
Built in 1940

Case study
Degradated reinforced concrete arch bridge
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Detailed in-situ inspection was carried out (cut probes and 
radiographic inspection):       cracks in arch corrosion in bar

– Geometry of individual parts

– Type and position of 

reinforcement

– Level of degradation

Significant cracks in left arch and significant corrosion of 
reinforcement after depassivation of concrete in vertical 
pull bars.

Concrete arch bridge

CONSEC13, Nanjing, China

Source: destructive and non-destructive tests + adopted from literature 
(JCSS probabilistic model code, FReET-D documentation)

Basic random variables
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• Limit state for depassivation of reinforcement due to 
carbonation of concrete cover:

d(t) is carbonation depth of concrete  in time t, 
c is concrete cover 

)()( tdctZ -=

• Models for carbonation 
depth according to 
Morinaga (Carb3) and 
Kishitani (Carb7) 

• Target reliability index 
   bn = 1.3

2005

2010

Level 1: Durability limit state of girder

• Ultimate load-bearing of highly deteriorated pull bar has 
been analyzed. Time dependent limit state function:

As(t) is area of reinforcement, fy is yield stress of steel, 
N is axial force in bar, t is time. 

• Model Corr1 for steel corrosion

• Target reliability bn = 3.8

)()()( tNftAtZ ys -=

( ) ( )0.0116
0.0116

0
0.0116

i i
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2005

Level 2: Ultimate limit state of pull bar
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• Ultimate load-bearing of the whole structure using 
stochastic nonlinear FEM analysis has been analyzed.

• Target reliability index bn = 3.8
• Model Corr1 for steel corrosion

2016

Level 3: Global level 

Outline

• Oberndorfer Wien
• Experiments on fracture-mechanical parameters of 

concrete, database of fracture-mechanical 
parameters 

• Experiments of scaled prestressed concrete girders
• Deterministic  computational model of pre-stressed 

concrete girders.
• Stochastic model
• Probabilistic design

2/23

Shear resistance of prestressed
girders: Probabilistic design
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Experiment: fracture-mechanical parameters 
of concrete

+

3PB WST

Identification

Database

CT

More concrete mixes:
• C40/50
• C50/60
• …

Different ages of testing:
• 1 day
• 7 days
• 28 days
• 126 days

4/23

Scheme of inverse analysis

Material
model
parameters

Stochastic calculation (LHS) – training set for 
calibration of synaptic weights and biases

Structural response 

12/30

B31



Database of fracture-mechanical parameters 
of selected concrete in FReET software

5/23

Experiment: scaled pre-stressed girders

Basic geometry:
length 5 m, beam flange 1.5 m, thickness 0.07 m, beam web 0.14 m wide 
and 0.23 m high

6/23
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Experiment: scaled pre-stressed girders
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Deterministic computational model

It is necessary to model transition radius between web and flange according to 
drawings of form provided by manufacturer.

Regular hexagonal FE mesh composed of 24714 finite elements was generated in the 
program GID.

8/23

ATENA Science 3D
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Deterministic computational model

The beam was continuously pre-stressed with 83.5 kN by a six 
cables St 1570/1770 

Two different approaches have to be use simultaneously for applying prestressing
losses:

A) Reduction of prestressing itself – due to difference of E module value at time 
of prestressing and time of experiment (also due to relaxation of tendons);

B) Application of temperature load – in order to capture effect of creep and 
shrinkage (value of corresponding temperature load was calculated according 
to FIB Model Code 2010).

9/23

Deterministic computational model

Crack pattern of numerical model and experimental test

Numerical model of destructive test described above shows very 
good agreement with experiment in all aspects.

10/23
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Stochastic material data 
calibration/identification

Material model of concrete:
• 3D Nonlinear Cementitious 2 (implemented in software ATENA Science)
• Four most sensitive material parameters were adjusted (Fc, Ft, Gf, E)

Parameters obtained from 
compression test of specimen with 
age of 41 days:
Based on experiment of girder

Parameters identified using ANN (using data 
obtained during fracture experiments):
Based on testing campaign-3point bending

Parameter Mean COV PDF
Compressive
strength 77 MPa 6.4% GMB min EV1

Tensile strength 3.9 MPa 10.6% GMB max EV 1

E - module 34.8 GPa 10.6% WBL min (3par)

Fracture energy 219.8 Jm-2 12.8% GMB max EV 1

Parameter Val.  
[MPa] Obtained by

Compressive 
strength

69.7 Measurement

Tensile
strength

04.IV Calculated 

E - module 35300
Cal. from LD 
curve

11/23

Stochastic material data 
calibration/identification

How to estimate material parameters of given realization with utilization of 
stochastic model of material?

• Use stochastic model to generate thousands of random vectors of material 
parameters using correct correlation matrix.

• Pick realization with Fc as close as possible to value directly measured before 
experiment.

Material parameters of given realization 
estimated using stochastic model:

fc [MPa] ft [MPa] Gf [MN/m] Ec [MPa]
-69.7 3.3432 1.97E-04 28483

12/23
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Load-displacement diagram
 (deterministic analysis)

Comparison of load-displacement diagram 

13/23

Experiments and simulation 
of scaled pre-stressed girders
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Random variables

16/23

Prameter Mean COV [%] PDF Unit Source
Concrete (C50/60)

E 34.8 20.6 WBL min (3 par) [GPa] (Řoutil et al. 2014)

ft 3.9 20.6 GMB max EV I [MPa] (Řoutil et al. 2014)

fc -77 16.4 GMB min EV I [MPa] (Řoutil et al. 2014)

Gf 219.8 32.8 GMB max EV I [J.m-2] (Řoutil et al. 2014)

ρ 0.0023 4 Normal [kton/m3] (Řoutil et al. 2014)

Steel reinforcement (Bst 550B)
Es 200 2 Normal [GPa] (Ceresa et al. 2007)

fys 610 4 Normal [MPa] (Ceresa et al. 2007)

Tendons (Cables - St 1570/1770)
Et 195 2.5 Normal [GPa] (Ceresa et al. 2007)
fyt 1387.88 2 Normal [MPa] (Ceresa et al. 2007)

Prestresing force
P 0.0835 6 Normal [MN] (Ceresa et al. 2007)

Loss of prestresing (Uncertainties)
I. L. 1 30 Lognormal [-] (Ceresa et al. 2007)

L. T. L. 1 30 Lognormal [-] (Ceresa et al. 2007)

Stochastic „bundle“ of load-displacemnet 
diagram

18/23

31 simulations (11 simulations extended in second run of hierarchical 
LHS method by another 20 simulations)

-40

10

60

110

160

210

260

0 0,005 0,01 0,015 0,02 0,025

Fo
rc

e 
[k

N]

Displacement [m]

LD - Experiment vs. Model

T30 150V1 Experiment

B37



Ultimate limit state

19/23

• Ultimate limit state represented by critical value of force applied 
during experiment (peak of LD diagram)

• Design value by:
• fully probabilistic approach – design value for Probability = 

0.0012 (Eurocode)
• classical calculation using partial safety factors
• ECOV method 

Conclusions
• Efficient techniques of employing stochastic simulation 

methods were combined in FReET software - an advanced 
tool for the probabilistic assessment of user-defined problems 
at ultimate capacity and serviceability limit states

• Degradation models implemented in FReET-D software can 
help users to choose appropriate models and assess the 
service life issue as applied to concrete structures  - durability 
limit states

• SARA = complex integration of probabilistic engine (FReET) 
and nonlinear FEM (ATENA). Already hundreds 
applications/users worldwide, concrete structures, intensive 
development.

• Theoretical development and application/promotion

B38



• Project number: ATCZ190
• Project acronym: SAFEBRIDGE
• Duration: 01.09.2018–31.08.2021
• URL: https://www.at-cz.eu/safebridge 

• Lead partner: Universität für Bodenkultur Wien
• Project partner: Brno University of Technology
• Strategic partners: public subjects 

  – national (BMVIT, ÖBB Infrastructure AG, 
ASFINAG, Ředitelství silnic a dálnic ČR, Správa 
železnic), 

 – regional (Amt NÖ Landesregierung, Správa a 
údržba silnic Jihomoravského kraje), 

   – local (MA29 a Brněnské komunikace a.s.) 
small and medium-sized companies (VILL ZT, 

KOB ZT, Schimetta ZT, Potyka & Partner ZT, 
Dopravoprojekt Brno a.s., EXprojekt s.r.o.)

research institutions (Klokner Institute of the 
CTU in Prague)

awarded by European Regional Development Fund within 
the European Union program Interreg Austria–Czech 
Republic

• Main goal: 
– Design of advanced procedure of numerical assessment 
of bridge structures based on reliability theory (on the 
basis of EN 1990)

• Main outputs:
– Ensuring the possibility of utilization of advanced 
reliability assessment of bridges based on combination of 
numerical and statistical methods
– Creation of a Guideline for practical utilization of such 
methods (Appendix D of ÖN B 4008-2)
– Design of sustainable training program focused on the 
assessment of structural reliability

Project ATCZ190 – Advanced analysis of existing reinforced and pre-stressed 

concrete bridges: nonlinearity, reliability, safety formats, life-time aspects

Thank you for your attention!

www.freet.cz
www.cervenka.cz

Conclusions

Software tools: FReET, ATENA, SARA, FReET-D

http://www.freet.cz     http://www.cervenka.cz
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Cost, size, and structure optimization of CO2 
absorber columns onshore and offshore 

Brno, 23.5.2024 Lars Erik Øi, 
Professor in Process Technology, USN

Department of Process, Energy and Environmental Technology

Energy and Carbon Capture research group
(URGENT- USNs Research Group
for Energy and Environmental Technology)
Subgroups:
Carbon Capture
Alternative fuels (gasification)
Environmental Biotechnology
Alternative power supply (wind)

Department of Process, Energy and Environmental Technology
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USN Porsgrunn CO2 capture group experience:
http://www.co2-lab.com/

• Design of gas liquid absorption/desorption gas (e.g. CO2) processes
• Process simulations
• Cost estimation
• Lab. determination of process design data (solvent data: physical, 

corrosion, degradation)
• Solvent management
• Industrial CO2 safety
• Benchmarking of CO2 capture technologies

PTP: Porsgrunn test pilot 

• Background
– Lab-scale solvent test pilot
• 50 L solvent, Q=0,5-5 l/min; absorber: 1 bar, Tmax: 

70oC; desorber: 3 bar, Tmax: 130oC; synthetic flue gas
• Access to a complete support laboratory

• Possibility for
– Low-threshold accelerated solvent testing
– Validation of process models
– Visual solvent monitoring, on-line speciation

adsorb./desorb., off-line solvent analysis, etc.
– Solvent degradadation, solvent management
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5

CO2-concentration increases
and the temperature increases

(Fra Wikipedia)

6

CO2-capture in IEA’s 2-degrees scenario 
(2014)
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Capture cost for CO2-capture from 
industry in Norway

Tel-Tek/Klimakur, Klif (MD), 2009

Storage of CO2

(Figure from Bellona)
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Typical CO2-capture-process based on absorption

(Figure from SINTEF)

• Emissions of 900 000 CO2 ton/yr 
(from ammonia plant)

• A fraction of this is absorbed

in water under pressure in  4 
blue absorption towers

• Some is sold as CO2 (e.g. to 
Farris) and is exported by ship

• More of this CO2 could be 
captured if it coould be stored

10

CO2-emmisions and capture at Yara in Porsgrunn
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CO2-fangst at the Sleipner field in the North Sea

• Absorption of CO2 from natural gas

• To reduce unnecessary transport of 
CO2 and to reduce CO2 tax

• CO2 is stored in the Utsira formation
which is a salt water containing layer

between the ocean bottom and the
Sleipner oil and gas field

(Photo from Statoil)

Test Center Mongstad (TCM)
Test site for ca 80000 ton CO2/yr (amine based absorption)
Have tested processes for Aker Solutions (ACC) and Cansolv (Shell)
On TCM also the Alstom chilled Ammonia prosess is tested

(Photo from TCM)
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CO2 capture on Boundary Dam
in Saskatchewan in Canada

• Absorption of CO2 from exhaust from coal based power plant     
• CO2 is used for enhanced oil recovery (EOR)

(Photo from SaskPower)

CO2 emissions from Klemetsrud in Oslo 

(Photo from Wikipedia)
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CO2 emissions from cement plant in Brevik

(Photo from Varden)

(Photo from Norcem)

CCS project in Norway (Northern Lights)

(Figure from 
Regjeringen.no)
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Offshore CO2 Capture from gas 
turbine with low investment 
optimized using Aspen HYSYS

Lars Erik Øi, Fatemeh Fazli, Rajan Thapa
University of South-Eastern Norway

OUTLINE for paper

CO2 capture from gas turbine exhaust gas is a 
possibility for CO2 emission reduction on oil and gas 
production platforms.  
A standard process is based on absorption in 
monoethanol amine (MEA).  
A challenge for cost estimation and cost optimization is 
that the cost of size and weight for the process 
equipment is higher than on a land-based process. 
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UPSTREAM PROCESS AND A STANDARD 
CO2 CAPTURE PROCESS

SIMULATION FLOWSHEET OF THE BASE CASE CO2 CAPTURE 
PROCESS
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DIMENSIONING FOR COST ESTIMATION
For the absorber and desorber internals, a structured packing was chosen. 
Murphree efficiencies of 0.15 and 0.5 were specified for 1 meter of packing in 
the absorber and the desorber.  The absorption and desorber column 
diameter was calculated based on a gas velocity of 2.0 m/s and 1 m/s.
 
Centrifugal pumps with 75 % adiabatic efficiency were specified.

Overall heat transfer coefficient was specified to 500 W/(m2K)for the 
lean/rich exchanger.  

COST SPECIFICATIONS FOR COST ESTIMATION
The equipment costs were taken from 
the Aspen In-plant Cost Estimator 
(Version 10).

In the detailed factor method, 
each equipment cost (in carbon 
steel) was multiplied with its 
individual installation factor to 
get equipment installed cost. 

Parameter Value
Plant lifetime 25 years
Discount rate 8%

Maintenance cost 3 % of installed
cost

Electricity price 0.078 Euro/kWh
Steam price 0.032 Euro/kWh
Annual operational time 8000 hours
Currency exchange rate
2021 9.78

Cost index 2020 301
Cost index September 2021 317
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CONCEPTS FOR CO2 ABSORPTION COLUMNS

Traditional: Circular steel columns (with structured packing)
Large structures: Concrete (cheap and robust)
New land-based CO2 capture: Rectangular concrete shapes   
Offshore: Compact circular steel columns.  A challenge for 
cost optimization is that the cost of size and weight for the 
process equipment is higher than on a land-based process. 

Large cooling towers

Power plant in Dresden, H = 122 m.  Modular version of cooling tower (Wikipedia)
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Design of large scale CO2 absorber column

Typical material: SS304/SS316
Typical wll thickness: 10 mm
Support structure

These factors may be optimized for 
offshore applications
- New optimization design criteria
- Specifications for equipment vendors

Design of CO2 absorber column (from Thesis)
1.1 Absorber 
To calculate the absorption column diameter, the gas velocity within the column must be 
determined, which is typically assumed to be between 2-2.5 m/s [29]. Equation (3.1) can then 
be utilized to calculate the cross-sectional area (!) of the column using the volumetric flow 
rate, #̇%&', and gas velocity, (%&' . Subsequently, Equation (3.2) can be used to determine the 
column diameter ()). 
 

! = #̇%&'
(%&'

 (3.1) 

) = +4 × !. 	 (3.2) 

The gas flow and the dimensioning parameters for the absorber are shown in Table 3.1. 
 

Table 3.1: Absorber diameter calculation for base-case, doubled feed gas and two-absorber case 

Parameter Base Case Doubled Feed Gas Two-ABS 

Number of Absorbers 1 1 2 

Column Packing Height, m 15 15 15 

Column Height, m  30 30 30 

Cross section area, m2 266.02 531.9 266.02 

Diameter, m 18.4 26.02 18.7 
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Cost estimatation of CO2 absorber column

1.1.1 Aspen Process Economic Analyzer software for BEC estimation 
Another approach to estimate BEC employed in this study is Aspen Process Economic Analyzer 
(APEA). Aspen Process Economic Analyzer relies on model-based estimation to generate 
project cost estimates. The user-defined data for estimation the cost is quite like the Aspen-In-
Plant (AIP) cost estimator, while the APEA can calculate not only the equipment cost but also 
the installed direct cost (piping, civil, structural steel, insulation, etc.) for each process 
equipment. The equipment cost comparison for APEA and AIP cost estimator is presented in 
Table 4.3. 

 

Equipment Aspen Process Economic 
Analyzer (Euro) 

Aspen In-Plant Cost 
Estimator (Euro) 

Absorber 19957300 20175200 

Improvement of design of large scale
CO2 absorber column, especially off-shore

Typical material: SS304/SS316
Typical wll thickness: 10 mm
Support structure

These factors may be optimized for 
offshore applications
- Simulation (e.g. CFD) and design (e.g. FEM) tools
- New optimization design criteria
- Specifications for equipment vendors
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The End

• IPCC: http://www.ipcc.ch/
• IEA: http://www.iea.org/
• Miljødirektoratet: http://www.miljodirektoratet.no/
• Gassnova: http://www.gassnova.no/
• Bellona: http://bellona.no/
• Cicero:http://cicero.uio.no/no/posts/klima/parisavtalen

-hva-ble-egentlig-vedtatt?
• COP21: http://www.cop21paris.org/

Mer om CO2-fangst, klimapolitikk og 
klimaforhandlinger kan finnes på nettsidene
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Determination of mechanical fracture parameters 

using machine learning-based inverse analysis

David Lehký
Brno University of Technology, Czech Republic
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Outline
1. Introduction and motivation.
2. Methods for determining mechanical fracture parameters.

• Direct evaluation of fracture test data
• Inverse analysis

3. Identification of statistical characteristics of parameters
4. Methodology of inverse analysis

1. Artificial neural network
2. Stratified sampling
3. Software

5. Hybrid NNE-based identification system for fine-grained composites
6. Example of identification: shear wall failure
7. Summary and conclusions
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Introduction and motivation

The main reasons include:
Why do we determine material parameter values?

1. Verification of the material properties of existing 
structures to ensure their reliability and durability.

2. Studying the material properties of newly developed 
composites (recycled materials, high strength 
materials, etc.)

3. Numerical modeling of structures – advanced material 
models.

Determination of mechanical fracture parameters using machine learning-based inverse analysis  
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Introduction and motivation

Key parameter for computational modeling is fracture energy.

Not only mechanical properties (strength, stiffness) but also fracture properties 
(resistance to the initiation and propagation of cracks) are of interest.

Important parameters of concrete and other quasi-brittle materials are modulus of 
elasticity, tensile and compressive strength, effective crack elongation, effective 
fracture toughness, etc.
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Computational modeling – a typical procedure
Numerical model of structure

appropriate material model 
(e.g. 3D Nonlinear Cementitious 2, 

Microplane model, etc.)
– many material parameters 

Information about parameters:
• Experimental data
• Code recommended formulas
• Engineering estimation

Determination of mechanical fracture parameters using machine learning-based inverse analysis  
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Computational modeling – a typical procedure

• „Trial–and–error“ method
• Model updating via inverse analysis

Correction of parameters:
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How do we determine the parameter values?
Experimental measurements need to be carried out – in situ or in the laboratory.
Laboratory fracture tests of specimens with stress concentrators loaded in a suitable 
test configuration, e.g. three-point bending test, wedge splitting test, etc., are used 
to determine the mechanical fracture parameters of composites with quasi-brittle 
matrix.

Determination of mechanical fracture parameters using machine learning-based inverse analysis  
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How do we determine the parameter values?
During the test, the specimen is loaded with an 
increment of deformation and the values of applied 
load and displacement (deflection or crack mouth 
opening displacement) are recorded.
The result of the measurement is a test record in the 
form of a force vs. displacement (F–d) or force vs. 
crack mouth opening displacement diagram (F–
CMOD).
The (F–d) diagram carries a lot of information about 
the properties of the studied specimen.
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How do we determine the parameter values?

When carrying out the test, it is necessary to 
ensure that the test is carried out correctly and 
that the correct data is recorded. It is 
necessary to eliminate phenomena such as:
• Seating of the specimen + pushing into the 

supports – leads to incorrect recording of 
deformation. A special steel frame is used to 
measure deformation.

• Loss of measurement stability due to 
insufficient test machine stiffness in relation 
to the specimen stiffness. It can be detected 
from a deflection time series. Incorrect part 
must be removed and could be replaced by 
a suitable approximation.
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How do we determine the parameter values?
The mechanical fracture parameters can be obtained from the test record data by:
1. Direct evaluation of the F–d diagram using the Work-of-fracture method, Effective 

Crack Model, Double-K model.
2. Inverse analysis using the computational model.

It can be obtained from the initial branch of the F–d diagram. E.g. for 3PBT:

!! =
#",$
4%&$

'
(

%
1 − 0.387

(
' + 12.13

(
'

&.(
+
9
2
#",$
%&$

'
(

&
#) 3*

#) 3* = 4
*

+!
56& 5 &5 3* =

7*
(

' = 3(

6 3* = 8* + 8*3* + 8&3*& + 8%3*% + 8,3*,8$…see Karihaloo (1985)

Static modulus of elasticity
Direct evaluation of F–d diagram
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Direct evaluation of F–d diagram

9- =
1

( − 7* %
4#.d& + ;/&012

It represents the total energy required to create two new surfaces. It is evaluated from 
the entire F–d diagram – the fracture work is calculated = area under the curve 
divided by the size of the intact ligament. Then the fracture energy:

It is based on the effective crack model. It represents a quantitative expression of the 
material's resistance to crack propagation. It is the specific energy that a material is 
able to absorb locally before unrestricted crack propagation occurs.

<I3 4 =
6?max'
%(& 6 35 75

75, ?max … effective crack length and maximum 
moment, both corresponding to Fv,max

36 =
75
(

;/ … mass of the specimen

&012 … maximum deflection
% … specimen width

Effective fracture toughness

Fracture energy
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Direct evaluation

!!
""
# =

!# 1 − 12

"$
#

1 − ""#
	 1 − ""# > "$

#

!#
1
2
1 − ""#"$
#

	 1 − ""# ≤ "$
#

• The fracture energy obtained from the tests is 
dependent on the size of the specimens – it is 
affected by the size of the fracture process zone, 
which is affected by the free end of the specimen. 

• Hu & Wittman assume a bilinear distribution of the 
local fracture energy !+ over the depth. 

• The value obtained from the tests is the average 
fracture energy "+.

• The real fracture energy ", (material constant) can 
be determined from a set of at least two tests on 
the same size specimens with different initial 
notch depths #- – a system of two equations with 
unknowns ", a #.. 

True fracture energy
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Inverse analysis
The values of the selected mechanical fracture parameters can be determined by 
inverse analysis, where we try to use the measured response R to obtain information 
about the input parameters P which lead to the given response.

Inverse analysis can be performed in two ways:
1. Using optimization – an iterative search for input parameters under the condition 

of minimizing the difference between the obtained (from the model) and the 
desired response (from the experiment). A direct forward relationship (model) 
between the input parameters P and the output response R (P→R) is used.

2. Using direct inversion – the inverse relationship between P and R (R→P) is used. 
This must first be expressed/defined. 

Determination of mechanical fracture parameters using machine learning-based inverse analysis  
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Inverse analysis
Both methods use a nonlinear computational model.
E.g. ATENA software – CC3D Nonlinear Cementitious 2 material model.

Parameters to be identified from 3PBT:
• Modulus of elasticity Ec

• Tensile strength ft (Rt)
• Fracture energy Gf

Tensile softening model according to Hordijk:

D) = 3;	D& = 6.933;	G7 =
5.1498
I9

J G7 = 1 + D)
G
G7

%
exp −D&

G
G7

−
G
G7

1 + D)% exp −D&
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% = '/0())) %

The inverse relationship between the input material parameters P and the response 
of the test sample R is sought.

Identification using direct inversion
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% = '122/0 ())) %

The inverse relationship between the input material parameters P and the response 
of the test sample R is sought, e.g. in the form of an artificial neural network (ANN).

Identification using direct inversion
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Identification of statistical characteristics of parameters

Two approaches:
• Load-deflection “one-by-one” identification approach

Material parameters are identified individually for each specimen (individual L–d
diagram is used as an input of ANN). Subsequently, statistical assessment of 
parameters of all specimens is carried out.

• Direct statistical parameters identification
Random response of a structure is available in form of histograms and 
statistical moments (set of random L–d diagrams is used as an input of 
ANN). Statistical parameters are direct output of inverse analysis (ANN).

Determination of mechanical fracture parameters using machine learning-based inverse analysis  
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Direct statistical parameters identification
This approach offers the possibility of direct identification of random material 
parameters based on the random response.

) %
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Methodology: artificial neural network
Neuron: Feed-forward multilayer network:

+ = ' , = ' -
3
.3/3 + 1

Output from a neuron:

k – number of input (1,...,K)
wk – synaptic weight of connecting path from kth neuron of previous layer
pk – input signal from kth neuron of previous layer
b – bias
f – transfer function of neuron

inputs        hidden layer         output layer
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Methodology: artificial neural network

N – set size (number of input–output vectors);
yiks – the real output of kth output neuron for ith input;
yikp – the required output of kth output neuron for ith input.

2 phases of ANN activity
Active phase (simulation)
Adaptive phase (training)

To train the feed-forward ANN, a training set is required, i.e. a set of ordered 
pairs of inputs and corresponding outputs of the network.

Minimizing network error – it’s an optimization task:

ANN training – adjustment of synaptic weights and biases:

/00 ⋯ /04 ⋯ /05
⋮ ⋱ ⋮
/60 ⋯ /64 ⋯ /65

↔
+00 ⋯ +04 ⋯ +05
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+30 ⋯ +34 ⋯ +35

6 = 1
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5
-
470

8
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: ;
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Methodology: Latin hypercube sampling simulation

- One pi is chosen from 
each of Nsim intervals

- High accuracy at low Nsim

Preparation of a training set by performing random virtual experiment via stratified 
statistical simulation.

Alternatives:
- LHS median
- LHS random
- LHS mean

Determination of mechanical fracture parameters using machine learning-based inverse analysis  
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Software: FraMePID-3PB
• Developed for fully automatic and easy to use ANN based identification using 

3PB experimental data (L–d diagrams).
• Designed for concretes of various strength and ages (large training set with 

relatively high variability of material parameters).
• Prepared for testing of specimens with 

various notch depth – study of fracture 
process zone development and 
corresponding changes of fracture 
energy.

• Implemented experimental data filtering.
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Software: FraMePID-3PB
• Robust ANN implemented and trained – significant time reduction compared to 

general identification tasks.
• FEM computational model implemented (ATENA software) – 3D Nonlinear 

Cementitious 2 material model.
• Subject of identification: 

– modulus of elasticity Ec

– tensile strength ft 
– fracture energy Gf

• Export of identified parameters to 
clipboard, text file, ATENA .ccm file.

• Direct transfer to ATENA for verification via 
ATENA interface (in preparation).
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Fine-grained composites
Extensive research efforts in developing new types of binders, environmental-friendly 
building materials such as alkali-activated materials (AAMs) which are a promising 
alternative to traditional Portland cement. 

Major disadvantage: 
• Increased shrinkage → volume contraction, microcracking and the deterioration of 

tensile and bending properties. 

Solution: 
• The addition of different types of fiber to alkali-activated matrix. E.g., hemp fibers 

can be used as a sustainable alternative to the steel and synthetic fibers.
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Coarse- vs. fine-grained composites

Coarse-grained composites 
(concrete)

Fine-grained composites
(mortars)
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Hybrid NNE-based identification system
Properties of a Hybrid neural network ensemble-based system:
• Ec – ft – Gf space divided into subspaces with a single ANN in each.
• Limited range of parameters for a single network.
• One or more ANNs activated based on an initial analysis of response data.
• Robust, accurate and easily expandable system.

D13



Determination of mechanical fracture parameters using machine learning-based inverse analysis  

27University of South-Eastern Norway, Porsgrunn campus, NorwayJune 3, 2024

: = 23 overlapping subspaces for ; parameters

Weighted parameters from ANN ensemble in overlapping parts

Weighting coefficients: 

Relative distance: 

Hybrid NNE-based identification system
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Example of identification 2: Shear wall failure
Identification of material model parameters of constitutive law for concrete failure 
(shear wall)

Experiment:
Maier a 

Thürliman,
1985

SimulationExperiment
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FEM model in ATENA softwareExperimental failure

Example of identification 2: Shear wall failure
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Example of identification 2: Shear wall failure
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Example of identification 2: Shear wall failure
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Parameters obtained from simulation 
of neural network:

Sensitivity of material model parameters:
6 parameters identified
10 parameters identified

Spearman E ft fc Gf ec wd x1 fx1 x2 fx2

F1 0.753 0,123 0.453 0.045 -0.335 -0.108 -0.167 0.015 -0.087 -0.107

F5 0.262 0.513 0.460 0.014 -0.263 -0.081 -0.516 0.311 -0.051 0.045

F10 0.158 0.382 0.608 0.081 -0.080 -0.027 -0.344 0.490 0.005 0.104

Fmax 0.129 0.341 0.636 0.054 -0.042 -0.053 -0.307 0.537 -0.009 0.171

DLNNET 6 par. 10 par.

E [MPa] 29.9 33.0

ft [MPa] 2.47 2.47

fc [MPa] 34.51 35.3

Gf [MN/m] 75.0 77.85

ec [-] 2.51E-03 2.57E-03

wd [m] 3.00E-03 3.10E-03

x1 2.72E-03 2.74E-03

fx1 566.9 570.7

x2 1.50E-02 1.47E-02

fx2 764 768.8

Example of identification 2: Shear wall failure
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Summary and conclusions
• The determination of mechanical fracture parameters is important in many structural

and materials engineering tasks. 
• The combination of laboratory fracture testing, direct evaluation of the test data and 

inverse analysis provides comprehensive information, especially for nonlinear 
modelling of structures made of quasi-brittle materials.

• Inverse analysis can provide information on additional parameters of constitutive 
models that cannot be determined directly from test records or have no physical 
meaning.

• ANN-based identification method can be used to directly identify the statistical 
characteristic of mechanical fracture parameters.

• When testing strength and fracture parameters, it is necessary to keep in mind their 
dependence on the size of the tested specimens.

• To automate the identification of heterogeneous groups of materials such as fine-
grained composites, fiber-reinforced concretes, etc., it is appropriate to use a 
hybrid NNE-based identification system.
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Thank you for paying attention!
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Permanent deformation 
and fatigue damage 
analysis of asphalt 
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Outline 

• Asphalt concrete damage

• Permanent deformation & Fatigue

• Damage interaction 

• Way forward 

• Conclusion 
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Asphalt concrete mixtures
• Asphalt concrete is an engineered heterogenous mixture (Aggregates, sand (and 

fillers), binder and/or modifiers).

• Over 90% of paved roads are asphalt concrete

• Mixing temperature: Hot, warm, cold

©Mequanent M 3

~95%

~5%

• Roberts, F. L., Mohammad, L. N., & Wang, L. B. (2002). History of Hot Mix Asphalt Mixture Design in the United States. Journal of Materials in Civil Engineering, 14(4), 279-293.
• European Asphalt Pavement Association (EAPA), Asphalt in Figures, 2022

Effect of binder on asphalt 

mixture performance

Asphalt concrete mixture 

• An engineered material 

• subjected to high loading cycle (in 106) i.e., short 
service life

• Main objectives of service life prediction; 

• Critical strain due to deformation, 𝜀𝑐𝑟

• Number of cycles to fatigue failure, 𝑁𝑓

Traditional design criteria

• Tensile strain at bottom of AC layer, 𝜀𝑡

• Vertical stress on top of subgrade

Tire pavement interaction ?

Top-down cracking? 

shear surface deformation?

©Mequanent M 4

P

εvp

𝜏
q
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Stress distribution Under Tire

©Mequanent M 5

L. Ann Myers, et al., Measurement of Contact Stresses for Different Truck Tire 

Types To Evaluate Their Influence on Near-Surface Cracking and Rutting, Journal 

of the Transportation Research Board 1999 Vol. 1655 Issue 1

Vertical Stress (C)

Horizontal 
Stress (T)

Shear 
Stress Horizontal 

Stress (C)

C – compressive
T – Tensile 

TimeSt
re
ss

Observations→
✓ Sharp shear stresses cause surface cracks

✓ Rutting accompanied cracking

Asphalt Mixture Performance

Required performances

• Ability to distribute stresses

• Resistance to:

▪ permanent deformation

▪ cracking (fatigue, thermal, etc.)

▪ freeze-thaw and moisture damage.

Factors affecting performance 

• constituent materials, 

• load, 

• environmental conditions

• construction

©Mequanent M 6

Di Benedetto, et al., 2013. Mechanical Testing of Bituminous Mixtures, in: Progress of Recycling in the Built Environment. Progress of Recycling in the Built Environment, 143–
256.
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Asphalt Mixture Performance 

©Mequanent M 7

Notani, M.A. et al.,. Performance Evaluation of Using Waste Toner in Bituminous Material by Focusing on Aging and Moisture Susceptibility. J. Mater. Civ. Eng. 2021, 33, 4020405

Fatigue Cracking

Low temperature Cracking 

Long-term 

• Set of Tests

• Standards 

• Quality control

Rutting

Compaction 

Environmental 
Damages

Moisture damage

1

2

3

Common Pavement damages

©Mequanent M 8

European Commission: COST 333: Development of New Bituminous Pavement Design Method: Final Report of the Action, volume 18906. European Communities, 1999 
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Domains of Asphalt mixture behavior

©Mequanent M 9

Di Benedetto, H., Yan, X.L.: Comportement me´canique des Enrobe´s bitumineux et mode´lisation de la contrainte maximale. Mater. Struct. 27, 539–547 (1994)
Olard, F., Di Benedetto, H., Dony, A., Vaniscote, J.-C., 2005. Properties of bituminous mixtures at low temperatures and relations with binder characteristics. Materials and 

Structures 38, 121–126.

• Small vs Large strain

• Low vs High cycle fatigue

• Influence of temperature  

Fundamental Response

©Mequanent M 10

Fatigue – rutting interaction
▪ Intermediate temperature
▪ Visco-damage, Visco-fractureViscoelastic-Viscoplastic damage

▪ Viscoplasticy- strain hardening
▪ Creep-recovery test at intermediate-

high temperature

Viscoelastic damage
•Viscoelastic Continuum damage model

At Low Temperature

𝑹𝜺,𝝈 = 𝒇(𝑻𝒐, 𝜺𝒐, 𝝈𝒊𝒋, 𝑷𝒐, 𝑷𝒂𝒕𝒎, ሶ𝜺)

Interaction

E5



Permanent deformation 

The permanent deformation of asphalt pavement 

are caused by

• asphalt mixture instability (shear instability 

rutting) – Mode 1

• structural deficiency, – Mode 2

• Wear due to studded tyre*

©Mequanent M 11

Mode 1

Mode 2

Rut Depth:

McGennis, R.B., Anderseon, R.M., Kennedy, T.W., and Solaimanian, M. (1994), Introduction to Superpave asphalt mixture design, Federal Highway Administration, Office of Technology Applications, W, DC. 

Permanent deformation

©Mequanent M 12

εvp = ANB + C eDN − 1
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Fatigue Damage

▪ Fatigue is manifested as stiffness deterioration and cracking

▪ Strain controlled or stress controlled, T-T or T-C

©Mequanent M 13

T-C or T-T 

stress

Viscoelasticity
• Uniaxial stress-strain (𝝈 − 𝜺) relationship for linear viscoelastic (LVE) material 

given by Boltzmann integral, 

        𝝈 𝒕 = 𝟎׬
𝒕 𝑬 𝒕 − 𝝉 𝒅𝜺

𝒅𝝉
𝒅𝝉, 𝑡 – physical time; 𝜏 – integral variable; 

• 𝐸 𝑡  – relaxation modulus using generalized Maxwell model; 

 𝐸 𝑡 = 𝐸∞ + σ𝑛=1
𝑁 𝐸𝑛 𝑒𝑥𝑝 − 𝑡

𝜆𝑛
 

 𝐸∞ - Long-term (equilibrium) modulus

• Time-Temperature-pressure Superposition (TTPS): 

  →E∗ (T, P, f) = E∗(𝑻𝟎,𝑷𝟎, 𝒇𝑹)

©Mequanent M 14

Maxwell model
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Damage Modeling

1. The dissipated energy (DE)

𝐷𝐸 = න
0

𝜏

𝜎 𝑡
𝜕𝜀 𝜏

𝜕𝜏
𝑑𝜏

• Sinusoidal fatigue (strain-controlled), 

𝐷𝐸𝐹 = 𝜋 𝐸𝑖
∗𝜀𝑖

2 𝑠𝑖𝑛 𝜑𝑖

• Creep-recovery deformation

𝐷𝐸𝑃𝐷 = 𝜎𝑜 ∗ 𝜀𝑐𝑟

• DE failure criteria: 𝑫𝑬𝑹 = 𝒏 𝑫𝑬𝟏
𝑫𝑬𝒏

2. Continuum damage mechanics

• Damage density, 𝜔∈[0,1); ω = 1 − σA

σT

• Viscoelastic Continuum Damage 

• (elastic-viscoelastic corresp. principle and work 

potential theory)

©Mequanent M 15

Te
st

 O
p

ti
o

n
s

Robustness 

(Knowledge Level)

Empirical [Experiential]

Mechanistic-Empirical

Mechanistic [Scientific]

Scale

Magno [Large/full]

Macro

Micro

Nano

Asphalt concrete Testing Options

16

Advanced 
Testing

Advanced 
Focus

Multiscale Investigation; 
• Nano (nm. . .mm), 

• Micro (mm. . .mm), 

• Meso (mm. . .dm), 

• Magno (dm. . .dam) 

• Mega (dam. . .km)

©Mequanent M
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Multiscale Testing of Asphalt Mixtures

©Mequanent M 17

Scale dependencies 

involved in a 

multiscale 

interpretation of 

asphalt concrete

B.S. Underwood, Multiscale modeling approach for asphalt concrete and its implications on oxidative aging, Ed.(s): Shin-Che Huang, Hervé Di Benedetto, Advances in Asphalt Materials, 

Woodhead Publishing, 2015, 273-302.

AFM-Atomic Force Microscopy, 

SPM-scanning probe microscopy

CFM-chemical force microscopy, 

DSC-differential scanning calorimetry,

Dynamic mechanical analysis (DMA)

AASHO Road test 1960’s, 
Ottawa, Illinois, USA

Full scale Asphalt Performance tests 

18

MnROAD Test Track

Circular Vs Oval 

Spain, centro de 
estudios de 
carreteras (CEDEX)

French Test track

National Academies of Sciences, Engineering, and Medicine. 2012. Significant Findings from Full-Scale Accelerated Pavement Testing. Washington, DC: The National Academies Press.

©Mequanent M

E9



Some Laboratory Asphalt concrete mixture tests

©Mequanent M 19

Performance
Asphalt Mixture 
Test

Verdict Indicator Remark 

1. Stiffness 
Dynamic Modulus • Homogenous 

Stiffness, Fatigue, 
rutting

Fundament
al 

Resilient Modulus • Non-homogenous Stiffness 

2. Permanent 
deformation

Repeated creep recovery
• Realistic traffic, 

Complicated, costly
Rutting, relaxation

Superpave shear test • Complex, costly
Shear Modulus, 
Shear Rutting

Accurate 
shear 
rutting

Wheel tracking • Simulative, costly Rutting and stripping 

3. Fatigue 
Cracking

Uniaxial T-C fatigue • Homogenous, complex Fatigue

IDT fatigue
• Non-homogenous, 

Effective 
Fatigue, fracture

4. Low 
temperature 

Thermal Stress Restrained 

Specimen Test (TSRST)
• Homogenous, complex Thermal cracking

Dynamic Modulus tests

• Sinusoidal stress and strain waves in complex 

domain, 

• Dynamic Modulus, 𝐸∗is a complex number (with 

real and imaginary components)

𝐸∗ = 𝐸∗ 𝑐𝑜𝑠𝜑 + 𝑖𝑠𝑖𝑛𝜑 = 𝐸∗ 𝑒𝑖𝜑

• Storage/real Component → 𝐸′ = 𝐸∗ 𝑐𝑜𝑠𝜑

• Loss/imaginary Modulus → 𝐸′′ = 𝐸∗ 𝑠𝑖𝑛 𝜑

©Mequanent M 20

𝜑 - the phase angle 

𝜔 - Pulsation frequency 

𝜀 t = εo sin ωt = 𝜀𝑜𝑒𝑖𝜔𝑡

𝜎 𝑡 = 𝜎𝑜 𝑠𝑖𝑛 𝜔𝑡 + 𝜑 = 𝜎𝑜𝑒𝑖 𝜔𝑡+𝜑

E10



Dynamic Modulus master curves
• Effect of confining stress on 

dynamic modulus 
• Relaxation modulus

©Mequanent M 21

logE∗ = δ +
α − δ

1 + exp β − γlogfR
log aT = −

C1 T − Tr

T − Tr + C2 E t = E∞ + ෍
n=1

N

En exp −
t

λn
 

Linear Viscoelastic Analysis 

©Mequanent M 22

Mixture AC-L SMA-L AC-P1 SMA-P1 SMA-P2 AC-P1-X SMA-P2-X

𝐸∞ 61.92 87.88 172.48 101.74 127.12 72.20 38.78

𝑆𝑜 0.70 0.69 0.52 0.59 0.53 0.50 0.65

𝛼 2.43 2.45 2.91 2.69 2.90 3.02 2.54

𝑺𝒐 = 𝐦𝐚𝐱
∆ 𝒍𝒐𝒈 𝑬 𝒕

∆𝒍𝒐𝒈 𝒕
𝜶 = 𝟏

𝑺𝒐
+ 𝟏 
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Repeated Creep-recovery Test
• EN 12697-25  

• Temperature: 30, 40, 50 °C

• Loading/Rest time : 0.1/0.9, 0.4/0.6 …

• Axial stress: 200 – 2000 kPa

• Confining stress: 0 – 300 kPa

©Mequanent M 23

Haversine and block

Repeated Creep-recovery test

• Effect of triaxial stress on PD evolution

©Mequanent M 24

Effect of stress on permanent deformation and hardening rate – (T= 50 oC) 
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Repeated Creep-recovery test

• Three-stage creep evolution is based 

on strain rate

• Defining a new criterion using DER 

(Post FN, shear deformation)

• Deformability rates:

ൗεFN
FN , ൗεPV

NPV and ΤεSEL
SEL

©Mequanent M 25
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Uniaxial Fatigue Test 

• AASHTO TP107
•Strain controlled: 300, 400 µε

• Temperature: 10, 15, 21 and 30°C
• Frequency: 10 Hz

• Pulse: Sinusoidal (in tension-

Tension, Tension-compression)

• Failure Criterion: 50% dynamic 

modulus reduction

Test conditions

©Mequanent M 26
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Fatigue damage

VECD Model 
• Damage characteristics curve, S 

∆𝑺 = −
𝑫𝑴𝑹

𝟐
𝜺𝒂,𝒊

𝑹 𝟐 𝑪𝒊
∗ − 𝑪𝒊+𝟏

∗

𝜶
𝟏+𝜶

∆𝒕𝑹
𝟏

𝟏+𝜶

𝐷𝑀𝑅 =
𝐸∗

𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡

𝐸∗ 𝐿𝑉𝐸
, ∆𝑡𝑅 = 1

𝑎𝑇

∆𝑁
10

𝑪 = 𝟏 − 𝒂𝒔𝒃

©Mequanent M 27

Fatigue damage (T= 10 oC and Target strain = 300µε) 

Proposed Test Procedure 
for fatigue and rutting performance

Assumption 

• Sequential damage evolution 

• post compaction or strain hardening  can cause of fatigue 

cracking.

©Mequanent M 28
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Damage interaction

• early service life of asphalt 

concrete pavements, which is 

dominated by volumetric 

densification.

©Mequanent M 29

Permanent deformation- 
Fatigue (PD-F) Sequence

Damage Interaction
Fatigue – Permanent 
deformation (F-PD) sequence

©Mequanent M 30

• to simulate the effect of 

fatigue cracking on 

permanent deformation 

• Or the development of PD 

due to prior fatigue cracking 

• Perpetual/thick pavements 

E15



The PDF Sequence 

PDF sequence – fatigue (T=10 oC, strain 300µε) on new and per-deformed (PD) samples 

©Mequanent M 31

Laboratory Mix Mixing Plant 1
Mixing Plant 1

(aged l yr at room temperature)
Mixing Plant 2

The PDF Sequence

©Mequanent M 32

Effect of pre-deformation on fatigue damage response 

𝑪 = 𝟏 − 𝒂𝒔𝒃

(a) parameter b (b) total fatigue dissipated energy until failure (50% 
pseudo stiffness)

E16



The F-PD Sequence

• The effect of Fatigue on Permanent Deformation

• the strain rate in the steady-state stage, FN  and the DE.

©Mequanent M 33

F-PD sequence (a) DEPD of pre-fatigued samples (b) initial DEF of samples used for PD test

The F-PD Sequence

• DE_PD and DE_F energy quantities are not 

consistent with FN. 

• DE depends on mixture type, specimen, and 

temperature. 

©Mequanent M 34

Correlation of 𝐷𝐸𝑇, 𝐷𝐸 𝑟𝑎𝑡𝑒 vs FN in 

FPD sequence 

𝑫𝑬𝑻

𝑭𝑵
= 𝑫𝑬 𝒓𝒂𝒕𝒆

E17



Towards Mechanistic approach  

▪ Based on fundamental material theories

▪ Rely on material constitutive models

▪ Unlimited scope for model refinement 
▪ New materials, parameters etc.

▪ Realistic Pavement Response Model
▪ Evaluate change in loading to pavement performance

▪ More integrated one-step model

©Mequanent M 35

LVE/NLVE

Viscoplastic

Viscodamage

Thermo 
coupled

Continuum  
Mechanics

Performance

Way forward

• Performance-Engineered Mix design (PEMD) approach
Coupled testing

• Performance tests that can 

evaluate different damages

Unified damage modeling

• Temperature coupled models

©Mequanent M 36

PEMD 

Mechanistic method of asphalt design require advanced performance 
testing. 

E18



Conclusion
→ The LVE properties of AC is stress-dependent shift models – the long-term 

relaxation modulus and viscoelastic damage parameter. 

→ In a sequential test, the PD-F sequence was found to be more realistic damage 
sequence, where Strain hardening is the primary cause of fatigue damage.

→ In the F-PD sequence, effect of pre-fatigue cracking (up to 40 % stiffness) on PD 

was found to be marginal, which can be related to the healing and relaxation.

→ The shear endurance limit (fourth creep stage) marks the macro-crack formation 

– important to estimate pavement life. 

→ Coupling different asphalt concrete damages opens up the possibility of unified 

asphalt damage modeling using the benefits of a mechanistic approach.

©Mequanent M 37

Outlook

Existing test protocols for AC are insufficient to evaluate different damage modes 

simultaneously. 

The validity of time-temperature-pressure superposition principle can be 

extended to assess the interaction of permanent deformation and fatigue 

damages at intermediate temperatures. 

Towards a unified damage model which entails innovative testing methods and 

fundamental theory. 

©Mequanent M 38
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Thank you for your
attention!
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Surrogate models for UQ
Recent Developments

Uncertainty quantification

• quantity of interest of a physical system is represented by a costly
mathematical model Y = M(X)

• behavior of real physical system is non-linear

• input variables should be considered as random variables X

• uncertainty quantification of Y = M(X): statistical moments,
PDF, sensitivity analysis, estimation of quantiles etc.

Stochatic model
X1 X2

Mathematical
model

Y=M(X)

Stat. Moments

Sensitivity

PDF

Sources of Uncertainty
Uncertainty

Quantification
Y σ

μ
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Semi-probabilistic approach

How to determine design value of resistance Rd?

-3 -2 -1 0 1 2 3
0

05

1

5

2

5

3

35

4

Rd

f(x)

Rd = µR · exp(�↵R�vR)

PC2 USN-BUT Lukáš Novák 7 / 35
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Task Definition

• slightly non-linear function solved by NLFEM

• separation of Resistance and Load (↵R)

• assumption of 2 parametric Lognormal distribution (Gaussian)

• simplified task: estimation of mean value and variance (VR)

• coe�cient of variation vR can be decomposed as:

VR =
q

�
��@
@@

V 2
g + �

�@
@V
2
m + V 2

f ,

PC2 USN-BUT Lukáš Novák 8 / 35
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ECoV methods in 2D

x x Latin Hypercube Sampling

2 ECoV by Červenka

Eigen ECoV

n+1

3

Linear Simple Differencing
Taylor Series Expansion 

ECoV methodnsim

n Linear Advanced Diff.

( )n
2 Quadratic Simple Diff.

+

+

fX

f y

MeanCharacteristic

Ch
ar

ac
te

ris
tic Δ y

Δx
M

ea
n

2
Δx

Δ y 2
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ECoV by Červenka

• determination of global safety factor is based on sensitivity
factor ↵R and reliability index � (JCSS)

• 2 simulations are needed for estimation of coe�cient of
variation vR

• implemented in fib ModelCode 2010

Rd =
R(Xm)

�R�Rd

; vR =
1

1.65
ln

✓
Rm

Rk

◆

�R = exp(↵R�vR)

ČERVENKA, V.: Reliability-based non-linear analysis according to fib Model Code 2010. Struct Concr J fib, 2013,

14:19-28.

JCSS, JCSS Probabilistic Model Code, Joint Committee on Structural Safety (2001), iSBN 978-3-90938679-6.

Walraven, J., (editor), fib Model Code for Concrete Structures 2010, September 2013. ISBN: 978-3-433-03061-5.
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Linear TSE (TSE I)

• based on Taylor series expansion for uncorrelated variables

• closed formula for variance and mean value

• simple one-sided di↵erencing

CoVR =
1

rµ

vuut
nX

i

✓
rµ � rXi�

�Xi

�Xi

◆2

Xi� = F�1
i (�(�c)) ⇡ µXi · [1� exp(�c · �Xi )]

@r(X )

@Xi
=

rµ � rXi�

�Xi

H. SCHLUNE, K. GYLLTOFT, and M. PLOS, “Safety formats for non-linear analysis of concrete structures,” in

Mag Concrete Res (2012) 64:563-74.
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Advanced di↵erencing (TSE II)

• based on Taylor series expansion

• closed formula for variance and mean value

• adapted second order backward di↵erencing

VAR[R] =
nX

i

✓
@r(X)
@Xi

�Xi

◆2

@r(X)
@Xi

=
3Rm � 4RXi �2

+ RXi�

�Xi

RXi �2
= r(Xi �2

) = r(X1, ...,Xi �2
, ...,XN)

Xi �2
= µXi ��Xi/2
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TSE sampling in 2D

nsim=N+1
nsim=2N+1
nsim=2N+ (  )+1N

2

A
cc

ur
ac

y

Ef
fic

ie
nc

y

L. Novák, D. Novák “On Taylor Series Expansion for Statistical Moments of Functions
of Correlated Random Variables” Symmetry 2020, 12(8), 1379
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Eigen ECoV (derived from TSE)

vR ⇡
3Rm � 4R⇥�

2
+ R⇥�

�⇥
·
p
�1

Rm
,

where R⇥� = r (X1�, . . . ,XN�)

and R⇥�
2
= r

⇣
X1�

2
, . . . ,XN �

2

⌘

The Eigen distribution of the input
random vector ⇥ ⇠ (µ⇥,�2

⇥) is de-
scribed by:
�2
⇥ =

P
�2
Xi

= �1,

µ⇥ =
qPN

i=1 (Xmi )
2

�⇥ = µ⇥ � µ⇥ · exp
⇣
�c ·

p
�1

µ⇥

⌘

-

L. Novak, D. Novak “Estimation of coe�cient of variation for structural analysis: The
correlation interval approach” Structural Safety, 2021, vol. 92, 102101.
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Polynomial Chaos Expansion

Y = M(X) =
X

↵2NM

�↵ ↵(X)

• deterministic coe�cients to be computed - �↵

• orthonormal basis of multivariate polynomials -  ↵(X)

• M represents number of input random variables

• multi-index ↵ = {↵1, ....,↵M}, A =
�
↵ 2 NM

 

GHANEM R.G., SPANOS P.D. Stochastic finite elements—a spectral approach. Berlin: Springer; 1991
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Orthonormal basis

⌦
 ↵, �

↵
=

Z
 ↵

�
⇠
�
 �

�
⇠
�
p⇠
�
⇠
�
d⇠ = �↵�

• multivariate basis functions are orthonormal with respect to
the joint PDF p⇠.

• normalized Hermite polynomials are orthonormal to Gaussian
probability measure in the Wiener-Hermite PCE.

• common distributions can be associated to specific type of
polynomial (Wiener-Askey scheme).

XIU, D.; KARNIADAKIS, G.: The Wiener-Askey polynomial chaos for stochastic di↵erential equations. J Sci.

Comput., 2002, 24(2):619-44.
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Orthonormality of PCE

• generally statistical moment of any order is defined as:

⌦
ym

↵
=

Z ⇥
f
�
X
�⇤m

p⇠
�
⇠
�
d⇠ =

Z ⇥ X

↵2NM

�↵ ↵(⇠)
⇤m

p⇠
�
⇠
�
d⇠ =

=

Z X

↵12NM

...
X

↵m2NM

�↵1 ...�↵m ↵1(⇠)... ↵m(⇠)p⇠
�
⇠
�
d⇠ =

=
X

↵12NM

...
X

↵m2NM

�↵1 ...�↵m

Z
 ↵1(⇠)... ↵m(⇠)p⇠

�
⇠
�
d⇠

• it might be computationally demanding to employ MC

• PCE leads to dramatic simplification of equation due to the
orthonormality of basis polynomials
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Non-intrusive PCE

• PCE basis is made of polynomials up to a certain degree p
• coe�cients by OLS ! Y = M(X) for nsim
• nsim � 3� 5P , where P = card A

� = ( T )�1  TY

 =
n
 ij =  j(⇠

(i)), i = 1, ..., n, j = 0, ...,P � 1
o

Tensor product Total pol. order Hyperbolic Sparse solution
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Sensitivity analysis: Sobol’ indices

• Hoe↵ding-Sobol’ decomposition - Sobol’ indices (ANOVA)

• highly e�cient derivation of Sobol’ indices from PCE
• first order indices

Si =
X

↵2Ai

�2
↵

Var
⇥
M̃PCE

⇤ Ai =
�
↵ 2 NM : ↵i > 0,↵j 6=i = 0

 

• total indices

ST
i =

X

↵2AT
i

�2
↵

Var
⇥
M̃PCE

⇤ AT
i =

�
↵ 2 NM : ↵i > 0

 

SUDRET, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab Eng and System Safety, 2008,

93: p. 964-979.

SOBOL, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math

and Comput in Simulation 55, 2001, p. 271-280.
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Higher moments and Sensitivity

• Sobol indices consider only the first 2 moments
• Higher statistical moments: shape of PDF
• Monte Carlo (LHS) needs thousands of simulations
• E�cient alternative? ! Polynomial Chaos Expansion

NOVÁK, L. On Distribution-Based Global Sensitivity Analysis by Polynomial Chaos
Expansion. Computers & Structures, 2022

PC2 USN-BUT Lukáš Novák 21 / 35

Uncertainty Quantification
ECoV: Point Estimates

Surrogate models for UQ
Recent Developments

Distribution-based SA

• Conditional moments ! conditional CDFs
• Generalization of Sobol indices for PCE

F│X1

γ 

σ2

μ
κ

Gram–Charlier expansion
of cumulative distrib. func.

Kullback-Leibler divergence

Statistical analysis by PCE

γ│X1

σ2│X1

μ
κ│X1

Reduced PCEs and corresponding moments and CDFs

F│X1 γ│X2

σ2│X2

μ
κ│X2

K1

F│X2

K2
F│X2

FPCE
Y

FPCE
Y

FPCE
Y

NOVÁK, L. On Distribution-Based Global Sensitivity Analysis by Polynomial Chaos Expansion. Computers &

Structures, 2022
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Industrial Application & Comparison
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Recent Developments
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Scientific Machine Learning

• Machine learning & Scientific Computations ! SciML
• Foundations: Domain-aware, Interpretable, Robust
• Recent breakthrough: Physics-informed Neural Networks
(PINNs) by Raissi et al. 2019 (7750 citations)

• Uncertainty quantification in SciML?
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PC2: Physically Constrained PC

• Orthonormal basis in PCE
• Analytical form (fast evaluation) ! easy derivation
• E�cient for UQ (statistical and sensitivity analysis)

• Physical constraints
• Combination of data (X, M(X) = Y) and equality constraints
• Boundary conditions: Dirichlet, Neumann, Mixed, etc.
• constrained by PDE/ODE in virtual samples (discrete)

• E�cient optimization?
• Karush–Kuhn–Tucker conditions & Lagrange multipliers
• Normal equations ! constrained least squares

NOVÁK, L., SHARMA, H., SHIELDS, M. Physics-Informed Polynomial Chaos Expansions. Journal of

Computational Physics 506, 2024
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Lagrange multipliers, KKT

• P unknown deterministic coe�cients �

• nsim samples in experimental design  (X), Y
• nBC boundary conditions B [ (Xb)],cb
• nv = P � nBC virtual samples L [ (Xv )],cv

min k (X)� � Yk2

s.t. B[ (Xb)]� = cb
L[ (Xv )]� = cv


 T AT

A 0

�

KKT matrix


�
�

�
=


 TY

c

�
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Wave Equation

• Solution of the model M (X)

•Dirichlet

(
y(0, t) = y(1, t) = 0

y(x , 0) = sin (⇡x)

•Neumann
@y(x , 0)

@t
= 0

•Virtual
@2y(x , t)

@t2
= 4

@2y(x , t)

@x2

The code is available here.

•• standard LAR PCE

•••• PC2 based on KKT (LAR)

! iterative algorithm
p 2 [12, 14]
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Heat Equation with Random D

@f (x , t)

@t
= D@2f (x , t)

@x2
, x 2 [0, 1], t 2 [0, 1], D ⇠ U [0.2, 0.8]

f (0, t) = f (1, t) = 0, f (x , 0) = sin(⇡x)

• PC2 based on 90 XBC and Xv (nsim = 0)
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Mean and Quantiles

PC2 USN-BUT Lukáš Novák 30 / 35

F15



Uncertainty Quantification
ECoV: Point Estimates

Surrogate models for UQ
Recent Developments

Stochastic Euler Beam

• EI = const. = 1, KLE: q(x) =
PN

i=1

p
�i✓i (!)fi (x)

• truncation: N 2 [1, 2, .., 5]

• PC2 based on only XBC and Xv (nsim = 0)
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PC2 random realizations
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PC2 UQ & Derivatives
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PC2 is available in UQPy!

• available on the Python Package Index (PyPI) and Conda:
Quick Guide for Installation of Jupyterlab and Anaconda

• version control through git (requires Python 3):
https://github.com/SURGroup/UQpy

• Examples & Documentation:
https://uqpyproject.readthedocs.io/en/latest/

TSAPETIS, D.; SHIELDS, M.; GIOVANIS, D.; OLIVIER, A.; NOVÁK, L.; CHAKROBORTY, P.; SHARMA, H.;

CHAUHAN, M.; KONTOLATI, K.; VANDANAPU, L.; LOUKREZIS, D.; GARDNER, M. UQpy v4.1: Uncertainty

quantification with Python. SoftwareX, 2023
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Conclusions

• UQ plays an important role in engineering

• simplified point-estimates: ECoV methods

• complex analysis: surrogate models (PCE)

• PC2 for UQ of random and stochastic PDEs

• PC2 is available in UQPy!

Thank you for your
attention!

SHARMA, H., NOVÁK, L., SHIELDS, M. Physics-constrained polynomial chaos expansion for scientific machine

learning and uncertainty quantification. arXiv, 2402.15115, 2024
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